

Embedded Software
System Testing

This book introduces embedded software engineering and management
methods, proposing the relevant testing theory and techniques that prom-
ise the final realization of automated testing of embedded systems.

The quality and reliability of embedded systems have become a great
concern, faced with the rising demands for the complexity and scale of
system hardware and software. The authors propose and expound on the
testing theory and techniques of embedded software systems and relevant
environment construction technologies, providing effective solutions for
the automated testing of embedded systems. Through analyzing typical
testing examples of the complex embedded software systems, the authors
verify the effectiveness of the theories, technologies, and methods pro-
posed in the book.

In combining the fundamental theory and technology and practi-
cal solutions, this book will appeal to researchers and students studying
computer science, software engineering, and embedded systems, as well as
professionals and practitioners engaged in the development, verification,
and maintenance of embedded systems in the military and civilian fields.

https://taylorandfrancis.com

Embedded Software
System Testing

Automatic Testing Solution Based
on Formal Method

Yongfeng Yin and Bo Jiang

First edition published in English 2024
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Yongfeng Yin, Bo Jiang

Translated by Qingran Su, Ruinan Qiu, Yang Guo, Yi Song, Rui Yin

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of
their use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write
and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.
copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and
are used only for identification and explanation without intent to infringe.

English Version by permission of Beijing Huazhang Graphics&Information Co. Ltd. (China
Machine Press)

ISBN: 978-1-032-48818-9 (hbk)
ISBN: 978-1-032-48819-6 (pbk)
ISBN: 978-1-003-39092-3 (ebk)

DOI: 10.1201/9781003390923

Typeset in Minion
by codeMantra

http://www.copyright.com
http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003390923

v

Contents

List of Figures, xi

List of Tables, xv

Preface, xix

Authors, xxi

List of Abbreviations, xxiii

INTRODUCTION, 1

Chapter 1 ◾ Embedded System and Software 3
1.1 OVERVIEW OF EMBEDDED SYSTEM 3

1.1.1 Embedded Systems and Real-Time Systems 3
1.1.2 Features of Embedded Systems 8
1.1.3 Composition of Embedded Systems 11
1.1.4 Application Fields of Embedded Systems 15

1.2 OVERVIEW OF EMBEDDED SOFTWARE 19

1.2.1 Embedded Software Classification 19
1.2.2 Embedded Operating Systems 22

1.3 SUMMARY 38

Chapter 2 ◾ Embedded Software Engineering and
Quality Characteristics 39

2.1 EMBEDDED SOFTWARE ENGINEERING 39

2.1.1 Embedded Software Development Model 42
2.1.2 System Analysis and Software Definition Phase 44

vi    ◾    Contents

2.1.3 Software Requirements Analysis Phase 44
2.1.4 Software Design Phase 44
2.1.5 Software Implementation Phase 47
2.1.6 Software Testing Phase 47
2.1.7 Software Acceptance and Delivery 50
2.1.8 Software Use and Maintenance Phase 57

2.2 EMBEDDED SOFTWARE ENGINEERING
MANAGEMENT 58

2.2.1 Software Engineering Management 59
2.2.2 Software Development Methodology 60

2.3 EMBEDDED SOFTWARE QUALITY FEATURES 62

2.4 SUMMARY 64

Chapter 3 ◾ Embedded Software System Testing
Techniques Based on Formal Methods 65

3.1 OVERVIEW OF SOFTWARE FORMAL TESTING
TECHNIQUES 65

3.1.1 Overview of Software Formal Testing 65
3.1.2 Formal Statute-Based Language 67
3.1.3 Based on Finite State Machine and Time

Automation Models 70
3.1.4 Based on the UML 72
3.1.5 Based on the Petri Net Model 73
3.1.6 Based on the Markov Chain Model 74
3.1.7 Based on a Custom Formal Test Description

Language 75
3.2 EMBEDDED SOFTWARE FORMAL TESTING

TECHNIQUES 76

3.2.1 Basic Concept 76
3.2.2 FSM-Based Software Testing Techniques 81
3.2.3 EFSM-Based Software Testing Techniques 82
3.2.4 Real-Time Extended Finite State Machine Model

RT-EFSM 87

Contents    ◾    vii

3.3 TEST CASE GENERATION BASED ON REAL-TIME
EXTENDED UML WITH RT-EFSM 100

3.3.1 UML and OCL Basic Concepts and Techniques 100
3.3.2 UML and Software Testing 108
3.3.3 UML Real-Time Extensions 110
3.3.4 Test Case Generation Process Based on

Real-Time Extended UML and RT-EFSM 128
3.4 SUMMARY 158

Chapter 4 ◾ Real-Time Embedded Software Automation
Test Description Technology 159

4.1 TEST DESCRIPTION CONCEPT AND CLASSIFICATION 159

4.1.1 Test Description Concepts 159
4.1.2 Test Description Classification 161

4.2 CHARACTERISTICS OF REAL-TIME EMBEDDED
SOFTWARE TEST DESCRIPTION 162

4.2.1 Real-Time Embedded Software Testing Features 162
4.2.2 RT-ESTDL Design Principles 164
4.2.3 Status and Role of RT-ESTDL 166

4.3 DESIGN OF REAL-TIME EMBEDDED SOFTWARE
TEST DESCRIPTION LANGUAGE 167

4.3.1 Lexicon of RT-ESTDL 167
4.3.2 Syntax of RT-ESTDL 168

4.4 RT-ESTDL SUPPORT MECHANISM FOR REAL-TIME
EMBEDDED SOFTWARE TESTING 172

4.4.1 Support for Real-Time Embedded Device Modeling 172
4.4.2 Support for Real-Time Embedded Software Testing

Time Constraints and Concurrent Processing 175
4.4.3 Support for Real-Time Communication of

Real-Time Embedded Device Models 177
4.4.4 Support for Reuse of Existing Device Models

and Test Descriptions 178
4.5 SUMMARY 178

viii    ◾    Contents

Chapter 5    ◾   � Testing Technology of Intelligent Terminal
Application Software System	 179

5.1	 BASICS FOR ANDROID APPLICATIONS	 179

5.1.1	 Android Operating System	 179
5.1.2	 Android Development Environment	 182
5.1.3	 Core Components for Android Application	 182
5.1.4	 Android Emulator and ADB Tools	 182
5.1.5	 Android UI	 183
5.1.6	 Android Log System	 184
5.1.7	 Code Coverage for Android Application	 185
5.1.8	 Android GUI Testing Frameworks	 186

5.2	 TEST CASE GENERATION TECHNIQUES FOR
ANDROID APPLICATIONS	 187

5.2.1	 Test Case Generation Tools for Android
Application	 187

5.2.2	 A GUI Traversal–Based Test Case Generation
Framework	 190

5.3	 REGRESSION-TESTING TECHNIQUES FOR
ANDROID APPLICATION	 200

5.3.1	 Safe Regression Test Selection Techniques	 201
5.3.2	 Workflow for Regression Testing of Android

Applications	 202
5.3.3	 Control Flow Graph Construction for Android

Application	 202
5.3.4	 Impact Analysis Algorithm	 206

5.4	 STRESS TESTING OF ANDROID APPLICATION	 209

5.4.1	 Resource Usage Query	 209
5.4.2	 Memory Stress Testing	 210
5.4.3	 CPU Stress Testing	 211
5.4.4	 Network Stress Testing	 212

5.5	 SUMMARY	 212

Contents    ◾    ix

Chapter 6 ◾ Real-Time Embedded Software System
Testing Environment Construction Technology 213

6.1 ANALYSIS OF EXISTING TEST ENVIRONMENTS
FOR REAL-TIME EMBEDDED SOFTWARE SYSTEMS 213

6.2 VIRTUAL MACHINE TECHNOLOGY AND REAL-TIME
EMBEDDED SOFTWARE TESTING 216

6.3 DESIGN OF A VIRTUAL MACHINE SPECIFICATION
FOR REAL-TIME EMBEDDED SOFTWARE
SIMULATION AND TESTING 218

6.3.1 Data Type 219
6.3.2 Memory Management 220
6.3.3 Test Task Management 221
6.3.4 Instruction System 224
6.3.5 Test Description File 225

6.4 RT-ESSTVMS BASED REAL-TIME EMBEDDED
SOFTWARE SIMULATION TEST ENVIRONMENT
DESIGN 225

6.4.1 RT-ESSTE Architecture Design 225
6.4.2 Test Development System Design 225
6.4.3 Test Execution System Design 227

6.5 DESIGN AND IMPLEMENTATION OF A REAL-
TIME EMBEDDED SOFTWARE TEST DESCRIPTION
EXECUTION ENGINE 232

6.5.1 Overall Design of RT-ESTDEE 232
6.5.2 Test Description Pre-processing Process 232
6.5.3 Test Scheduling Process 245
6.5.4 Test Description Execution Process 247
6.5.5 Execution of Online Test Descriptions 248
6.5.6 Test Execution Engine Efficiency Analysis 248

6.6 SUMMARY 251

x    ◾    Contents

Chapter 7 ◾ Case Study of Real-Time Embedded
Software System Testing 253

7.1 INTRODUCTION TO THE SYSTEM UNDER TEST 253

7.1.1 I/GNS System Overview 253
7.1.2 Main Functions and Performance 255

7.2 I/GNS SYSTEM STATIC MODELING 255

7.2.1 Cross-Linked Device Model Construction 255
7.2.2 Test Description of the Static Model 256

7.3 I/GNS SYSTEM DYNAMIC MODELING 259

7.3.1 Dynamic Modeling Based on UML State
Diagrams 259

7.3.2 RT-EFSM Model of I/GNS and Analysis of
Time-Constrained Migration Equivalence Classes 260

7.4 TEST SEQUENCE, TEST CASE AND TEST
DESCRIPTION GENERATION 263

7.5 TEST EXECUTION AND RESULT ANALYSIS 276

7.6 SUMMARY 279

APPENDIX 1 MATHEMATICAL SYMBOL INDEX 281

APPENDIX 2 SEMANTICS AND USAGE OF RT-ESTDL 285

APPENDIX 3 S OFTWARE INTERFACE DATA DEFINITION OF
I/GNS SYSTEM 297

APPENDIX 4 S OFTWARE TESTING SCENARIO TREE LIST OF
I/GNS 299

BIBLIOGRAPHY 301

xi

List of Figures

Figure 1.1 Architecture of distributed real-time system 6

Figure 1.2 Typical embedded system structure 7

Figure 1.3 Composition of embedded system 11

Figure 1.4 Embedded software classification 19

Figure 2.1 System development process and software
development process 42

Figure 2.2 Quality characteristics and sub-characteristics of
software 64

Figure 3.1 Software modeling and testing techniques based on
formal methods 66

Figure 3.2 Automatic test case generation based on Z language 68

Figure 3.3 TTCN-3 test set building idea 69

Figure 3.4 Test case generation process based on test outline 73

Figure 3.5 Several common FSM extension models 80

Figure 3.6 Extended directed edges of RT-EFSM 89

Figure 3.7 UAV flight control system software RT-EFSM model 91

Figure 3.8 Example of RT-EFSM unreachable state 93

Figure 3.9 Example of RT-EFSM Equivalent States 94

xii    ◾    List of Figures

Figure 3.10 Example of RT-EFSM state overlap 95

Figure 3.11 RT-EFSM state transition conflict example 95

Figure 3.12 Example of RT-EFSM state uncertainty 98

Figure 3.13 Global clock and state local clock 114

Figure 3.14 Timeout event constraint 115

Figure 3.15 Operation time constraints 115

Figure 3.16 Example diagram of transition subject to clock
constraints 115

Figure 3.17 Periodic event constraint transition 116

Figure 3.18 Feedback time constraint in state transition 116

Figure 3.19 Example of avionics real-time embedded system
model based on real-time extended UML 117

Figure 3.20 Schematic diagram of closed-loop simulation of
avionics system 118

Figure 3.21 MIL-STD-1553B bus command word 119

Figure 3.22 MIL-STD-1553B bus status word 120

Figure 3.23 MIL-STD-1553B bus data word 120

Figure 3.24 Static modeling framework for real-time
embedded systems 121

Figure 3.25 Test case generation process based on real-time
extended UML with RT-EFSM 129

Figure 3.26 Time zone division 135

Figure 3.27 State transition with time and variable constraints 136

Figure 3.28 Schematic diagram of the time-constrained
transition equivalence class 138

Figure 3.29 Example of a time-constrained transition
equivalence class 138

Figure 3.30 Test sequence generation process based on
time-constrained transition equivalence class 139

List of Figures    ◾    xiii

Figure 4.1 Status and role of RT-ESTDL 166

Figure 4.2 Typical avionics system architecture 173

Figure 4.3 Static modeling diagram of avionics equipment
software 175

Figure 4.4 Real-time embedded device model real-time
communication schematic 177

Figure 5.1 Android system architecture diagram 181

Figure 5.2 Basic widgets in Android UI 183

Figure 5.3 PUMA workflow 189

Figure 5.4 An exemplified GUI widget tree 196

Figure 5.5 The workflow of ReTestDroid 202

Figure 5.6 Sub-ICFG modeling asynchronous tasks 203

Figure 5.7 (a) Relationship of Fragment lifecycle and its
containing Activity state. (b) Part of a sample
Fragment-aware control flow graph generated
by ReTestDroid 204

Figure 5.8 Algorithm consumeCPU() for controlling CPU usage 210

Figure 5.9 Algorithm consumeNetwork() for controlling
network usage 211

Figure 6.1 Schematic diagram of the basic components of
RT-ESSTE 216

Figure 6.2 Memory allocation scheme as defined by
RT-ESSTVMS 220

Figure 6.3 RT-ESSTE architecture design 226

Figure 6.4 Design of the unified communications protocol stack 231

Figure 6.5 Overall design of the RT-ESTDEE 233

Figure 6.6 Test description execution engine pre-processing
process 233

Figure 6.7 Design of test description management class CTDfile 234

xiv    ◾    List of Figures

Figure 6.8 Design of the test description compiler class
CCompiler 235

Figure 6.9 Test description syntax analysis process 238

Figure 6.10 parseFile() processing 239

Figure 6.11 Example of a syntax tree 240

Figure 6.12 SBRMS-based test task scheduling execution
schematic 246

Figure 6.13 Design of the test description execution class
CExecuter 247

Figure 6.14 Online test task execution process 248

Figure 6.15 Execution time for different sizes of test descriptions 249

Figure 6.16 Medium-scale multiple tests depicting concurrent
execution times 250

Figure 7.1 I/GNS system equipment cross-connection schematic 254

Figure 7.2 I/GNS system cross-linking relationship 256

Figure 7.3 I/GNS and its cross-linking device static model 257

Figure 7.4 I/GNS system software state migration 259

Figure 7.5 RT-EFSM model for I/GNS system software 263

Figure 7.6 I/GNS system software test case statistics 276

xv

List of Tables

Table 1.1 Application of Software in Aircraft Systems 4

Table 2.1 System Analysis and Software Definition Stage Work 45

Table 2.2 Work in Software Requirements Analysis Stage 46

Table 2.3 Work in Software Design Stage 48

Table 2.4 Work in Software Implementation Stage 51

Table 2.5 Software Testing Phase Work 52

Table 3.1 A Classification of Formal Methods 66

Table 3.2 Summary of Common Test Scripting Techniques 75

Table 3.3 Issues that RT-EFSM Should Address 87

Table 3.4 Algorithm of Reachability Verification of RT-EFSM
Model 94

Table 3.5 Algorithm of Equivalent State Elimination Algorithm
in RT-EFSM Model 97

Table 3.6 Algorithm of State Transition Conflict Elimination
Algorithm in RT-EFSM Model 97

Table 3.7 Algorithm of RT-EFSM Static Uncertainty
Determination 99

Table 3.8 Dynamic Uncertainty Handling Algorithm for
RT-EFSM Models 100

Table 3.9 OCL Data Type and Operation 108

xvi    ◾

Table 3.10 Pseudo States After UML State Extensions 112

Table 3.11 1553B Bus Interface Properties 122

Table 3.12 RT-Equipment Properties 123

Table 3.13 Algorithm for Obtaining RT-EFSM State Tree from
UML State Diagram 132

Table 3.14 Algorithm for Construction of the Test Scenario
Tree TST 141

Table 3.15 Test Sequence Generation Algorithm Based on Test
Scenario Tree TST 142

Table 3.16 Algorithm for Solving RT-EFSM First Type
Synchronization Problems 144

Table 3.17 Algorithm for Solving RT-EFSM Second Type
Synchronization Problems 144

Table 3.18 Iteration Algorithm for the Test Sequence 146

Table 3.19 Test Case Generation Algorithm Based on
Time-Conditional Coverage Criterion 148

Table 3.20 XML Storage Structure for Test Cases 155

Table 4.1 RT-ESTDL Language Symbol Classification Table 169

Table 4.2 Format and Content of a Typical Avionics System
ICD File 174

Table 4.3 RT-ESTDL Description of a Typical Avionics System
Model 176

Table 5.1 Generic Algorithm for Test Generation Based on GUI 190

Table 5.2 Vectorization Algorithm of GUI State 192

Table 5.3 Algorithm for Calculating Cosine Similarity 193

Table 5.4 Algorithm for Calculating Jaccard Similarity 194

Table 5.5 Similarity Calculation for Hamming Strategy 195

Table 5.6 Vectorization Algorithm of UI Hierarchy Strategy 195

Table 5.7 Similarity Calculation for UI State Hierarchy 196

    List of Tables

List of Tables    ◾    xvii

Table 5.8   BFS Strategy	 197

Table 5.9   Deep First Search	 198

Table 5.10  Three Factors and Their Levels	 199

Table 5.11  Impact Analysis Algorithm	 206

Table 5.12  Safe Test Case Selection Algorithm	 208

Table 6.1  � Comparison of Three Real-Time Embedded
Software Testing Methods	 214

Table 6.2   Comparison of RMS and EDF Scheduling Strategies	 223

Table 6.3   Instruction System Specified by RT-ESSTVMS	 224

Table 6.4  � Test Description Execution Engine Instruction Set	 243

Table 7.1  � RT-ESTDL Description for Static Modeling of the
I/GNS System	 257

Table 7.2   I/GNS Partial State Migration Condition Analysis	 261

Table 7.3  � I/GNS Partial Sub-state Migration Condition
Analysis	 262

Table 7.4  � List of Equivalence Classes for Time-Bounded
Migration of I/GNS (partial)	 264

Table 7.5  � RT-ESTDL Description of Typical Test Cases
for I/GNS	 274

Table 7.6   I/GNS Typical Software Defect Analysis	 277

https://taylorandfrancis.com

xix

Preface

With the continuous development of computer technology,
human beings have entered the digital age, in which especially

embedded systems have become a necessity for everyone’s life. Research
has shown that people’s requirements for the complexity and scale of the
system software and hardware have exceeded the current design, imple-
mentation, testing and maintenance capabilities, resulting in the system
often being faulty, so the quality and reliability of embedded systems
have gradually become a concern. Based on the authors’ experience in
embedded software system testing for many years, this book introduces
the embedded software engineering and management methods from the
composition, classification, and characteristics of embedded systems and
expounds the embedded software system testing theory and test environ-
ment construction technology, which provides an effective solution for the
automatic testing of embedded systems.

https://taylorandfrancis.com

xxi

Authors

Yongfeng Yin i s a Professor and Vice President at the School of Software,
Beihang University, China. From 2015 to 2016, he was a visiting scholar
at Colorado State University, USA. His research interests include critical
software, software reliability, and embedded software testing.

Bo Jiang i s an Associate Professor at the School of Computer Science and
Engineering, Beihang University, China. His research interests include
software testing, blockchain security, and operating system.

https://taylorandfrancis.com

xxiii

List of Abbreviations

ADS2 avionics development system-2
ATLAS abbreviated test language for all systems
ATS automated test system
CADC central air data computer
CCS communication system calculus
CNI communication navigation and identification
CSP communication sequences process
CTL computation tree logic
DCMP display control and management processor
DTE data transfer equipment
EFSM extend finite state machine
ESSTE embedded software simulation testing environment
FCS flight control software
FSM finite state machine
I/GNS inertial/GPS navigation system
ICD interface control document
MC mission computer
OCL object constraint language
RT-EFSM real-time extend finite state machine
RT-ESSTE real-time embedded software simulation testing

environment
RT-ESSTVMS real-time embedded software simulation testing virtual

machine specification
RT-ESTDEE real-time embedded software testing description

execution engine
RT-ESTDL real-time embedded software testing description

language
RTRSM real-time requirements specification model
SCS safety-critical software

xxiv    ◾    List of Abbreviations

SUT software under test
timeCTEC time-constrained transition equivalence class
TPS test program set
TTCN-3 testing and test control notation 3
UIO unique input/output sequences
UML unified modeling language
USex extended unique sequences
VDM vienna development method

1

Introduction

With the continuous development of computer technology,
humans have entered the digital age. Embedded software has been

widely used in high-tech research and application fields, especially in avia-
tion, aerospace, medical, transportation, and modern weapon equipment
development. In view of the importance and particularity of embedded
software, its failure often leads to serious consequences. Therefore, the
quality and reliability of embedded software are paid increased attention,
and effective embedded software system testing is one of the most impor-
tant means to ensure software quality.

The authors of this book have nearly 20 years of practical experience in
embedded software system testing engineering, trying to cross the tradi-
tional entry-level and basic-level system testing technology and provide a
systematic solution for frontline employees engaged in embedded software
system testing from formal testing theory to automatic test description
method and automatic simulation test environment construction. Finally,
the effectiveness of the theory, technology, and method involved in this
book is further verified by explaining the typical complex embedded soft-
ware system testing engineering examples.

Chapter 1 introduces the basic concepts of embedded systems and soft-
ware. Chapter 2 discusses embedded software engineering and related
knowledge of quality and reliability. Chapter 3 introduces the theory
framework and technology of embedded software system testing based
on the formal method. Chapter 4 discusses the automatic test descrip-
tion method of real-time embedded software, mainly from the design and
operation mechanism of real-time embedded software test description
language. Chapter 5 focuses on the testing technology of intelligent termi-
nal application (embedded) software systems. Starting from the founda-
tion of Android system, it discusses the test case generation, regression
test, and stress test. Chapter 6 expounds on the construction technology of
embedded software system testing environment, puts forward the design

DOI: 10.1201/9781003390923-1

https://doi.org/10.1201/9781003390923-1

2    ◾    Embedded Software System Testing

idea of real-time embedded software simulation testing virtual machine
specification, and discusses the architecture design of real-time embedded
software simulation testing environment, the design and implementation
of test execution engine and efficiency analysis. Chapter 7 gives an exam-
ple of typical avionics-embedded software system testing.

The readers of this book are mainly undergraduates and postgradu-
ates majoring in computer, software engineering, embedded systems, and
related majors in colleges and universities. It can also provide reference
for professional and technical personnel in the field of military or civil
embedded system development, verification, and maintenance.

This book is edited by Yongfeng Yin. Yongfeng Yin authored Chapters
2–4, 6, 7, and Bo Jiang authored Chapters 1 and 5. In addition, graduate
students Qingran Su, Xuefeng Wang and Jiakang Liu have done a lot of
work in the text collation and appendix preparation, and I would like to
express my sincere thanks.

I particularly thank Professor Bin Liu of Beihang University and Feng
Wang of Researcher of Military Academy for reading this book and giving
a lot of valuable opinions and suggestions. I also thank many colleagues
of the Aviation Industry Computer Software Reliability Management and
Evaluation Center of Beihang for their help.

From the perspective of methodology, the theory and technology of
embedded software system testing are in the process of continuous devel-
opment. Readers are urged to criticize and correct any errors they discover
to help us continuously improve and perfect the book.

Yongfeng Yin

3

C h a p t e r 1

Embedded System
and Software

1.1.1 Embedded Systems and Real-Time Systems

Embedded system is an application-centered and computer-based spe-
cial computer system that can adapt to the requirements of different

applications on functions, reliability, cost, volume, and power consump-
tion, and it integrates configurable and scalable software and hardware.
Embeddedness, specificity, and computer system are the three basic core
elements of an embedded system. This chapter summarizes the embed-
ded system and software, so that readers will have a more comprehensive
understanding of it.

1.1 OVERVIEW OF EMBEDDED SYSTEM

As one of the greatest inventions of human society in the 20th century, the
emergence of computers has gradually brought mankind into the digital
age. At the same time, the arrival of the post-PC era makes people increas-
ingly exposed to a new concept: embedded products. An increasing num-
ber of complex hardware and software systems are embedded in medical,
automotive, industrial control, transportation, communications, aviation,
aerospace and modern weapons and equipment, such as NASA’s airborne
systems with nearly 500,000 lines of code, excluding 350,000 lines for
ground control and processing. In American telecommunications, the
total number of source codes of supporting software exceeds 100 million
lines. Table 1.1 shows the application of software in aircraft systems.

DOI: 10.1201/9781003390923-2	

https://doi.org/10.1201/9781003390923-2

4    ◾    Embedded Software System Testing

In 1990, IEEE (Institute of Electrical and Electronics Engineers) gave the
definition of embedded system: An embedded computer system is part of
a larger system and performs some of the requirements of that system; for
example, a computer system used in an aircraft rapid transit system. Usually,
devices used to control, monitor, or assist machines and devices are called
embedded systems. Embedded systems generally include a series of hardware
and software facilities, and embedded software is the software part of embed-
ded systems such as spacecraft control system, aircraft avionics system, mobile
phones based on Android, IOS and other systems, set-top boxes, automotive
electronics systems, and communication systems routers. In addition, in a
broad sense, the control system composed of MCU (STM32), SOC, and other
hardware is also called embedded system. The above embedded software often
has real-time characteristics, so it is also called real-time embedded system.

Usually, real-time systems are dedicated computer systems that must
perform calculations and I/O operations within time constraints speci-
fied by the external environment. POSIX Standard 1003.1 defines the real-
time system as “the operating system has the ability to provide services to
meet the requirements within a limited response time range”. In real-time
computing, the external environment can be seen as a set of constraints –
generally considered time constraints (also known as time limits). The exis-
tence of time limit is the most essential difference between real-time calcula-
tion and non-real-time calculation. The difference between a real-time system
and a non-real-time system is that a real-time system must provide some
mechanism to ensure that the time limit will not be destroyed. For non-real-
time systems, the correctness of the system only depends on the correct execu-
tion of the instructions, which is manifested in whether the instructions are
carried out in the logical order of the instructions and is not related to when
the instructions begin to execute and when they are completed. For example,

TABLE 1.1 Application of Software in Aircraft Systems

Years Aircraft Type
The Proportion of Aircraft Systems
Functions Realized by Software (%)

1960 F-4/F-100 8
1964 A-7 10
1970 F-111 20
1975 F-15 35
1982
1990

F-16/F-16A
B-2

45
65

2000 F-22 80
2006 F-35 85

Embedded System and Software    ◾    5

a program for calculating the square root of double-precision floating-point
number can be run on Pentium III microcomputer at 500 MHz or 8086
microcomputer at 4.77 MHz. The difference between the two is only the speed
of calculation, without affecting the correctness of the calculation results. The
three indicators commonly used to measure real-time systems are as follows:

• Response time: The time when the computer system identifies exter-
nal events respond.

• Survival time: The effective waiting time of the data. The data is valid
in this period.

• Throughput: The total number of times the system can handle within
a given time.

For the real-time system, the correctness of the system is not only related
to the correctness of the calculation results, but also more importantly, the
calculation must be completed within the specified time; otherwise, the
system will make mistakes or fail.

 1. Hard real-time systems and soft real-time systems
According to the characteristics of real-time systems, they can be

divided into “soft real-time systems” and “hard real-time systems”.

The characteristics of the “hard” real-time system are as follows:

• There can be no delay in any case.

• If the delay occurs, the output result is invalid.

• When the deadline cannot be met, the system will lead to cata-
strophic failure.

• When the deadline cannot be met, the system will cause huge
economic losses.

• The system response time is usually in the order of milliseconds
or microseconds.

For example, the flight control system and the nuclear reactor
control system are typical “hard” real-time systems.

The characteristics of “soft” real-time system are as follows:

• The delay of output results will increase the cost.

6    ◾    Embedded Software System Testing

•	 Delay will lead to the decline of system performance.

•	 The system response time is usually in the order of milliseconds
or seconds.

For example, online live broadcasting system is a typical “soft”
real-time system.

	 2.	Single machine real-time system and distributed real-time system
According to the distribution characteristics of real-time system

operating environment, real-time systems can be divided into single
machine real-time systems and distributed real-time systems.

	 (1)	 Single machine real-time system.
In a single machine real-time system, all tasks run on the same

computer and are only scheduled by the same operating system.
The biggest advantage of a single machine real-time system is that
its software and hardware structure is simple and easy to develop.

	 (2)	 Distributed real-time system.
In the distributed real-time system, multiple tasks are dis-

tributed on multiple computers, and the tasks on different nodes
communicate through the Internet. These tasks work together to
form a real-time system. The architecture of distributed real-time
system is shown in Figure 1.1.

Internet

real-time
computers

real-time
computers

real-time
computers

controlled
equipment

controlled
equipment

FIGURE 1.1  Architecture of distributed real-time system.

Embedded System and Software    ◾    7

In the distributed real-time system, some node computers are connected
with the controlled equipment (generating or receiving data and receiv-
ing real-time control). It is not only necessary to complete some real-time
computing tasks but also need to control the peripheral equipment in real
time. In addition, there are other node computers that are not connected to
any controlled equipment. They only complete real-time computing tasks.

Based on the above classification, the real-time embedded system has
the following characteristics in addition to the characteristics of general
application software:

• Embeddedness
Most real-time systems are special and complex, which need high

fault tolerance, and are typically “embedded” into a larger system,
that is, embedded software. A typical embedded system structure is
given in Figure 1.2.

• Interaction with external environment
A typical real-time system often interacts with external devices,

which may control a certain device or process. The real-time sys-
tem collects data from the outside through sensors and controls the
external equipment by outputting excitation signals.

Physical
environment

tn
e

mn
ori

vn
e

sensor

analog-to-digital
conversion

operator

specific interface

digital-to-analog
conversion

Input / output

em
bedded

RAM

em
bedded

RAM

em
bedded

NVM

em
bedded

NVM

processing
unit

Pow
er

supply

interface with other
systems

embedded system

FIGURE 1.2 Typical embedded system structure.

8    ◾    Embedded Software System Testing

• Real-time constraints
Real-time systems often have strong time constraints, requiring

that the event processing must be completed within the specified
time. If it is delayed, it will often cause disastrous consequences.

• Real-time control
Real-time software often involves real-time control. It determines

how to control external cross-linked devices through the collected
data. Real-time software is not all real-time components, but it also
has no real-time parts, such as post analysis and processing of data.

• Reactive systems
Many real-time systems are reactive systems,50 which are event-

driven and need to respond to external incentives. In general, the
response of real-time system to external excitation mostly depends on
the state, that is, the response output of the system depends not only
on the current excitation but also on the previous system excitation.

• Concurrent processing
A remarkable feature of most real-time systems is the existence

of concurrent processing, and many external events need to be
processed at the same time. Usually, the arrival of external events
is unpredictable. It should be noted that the input load of the real-
time system changes significantly with time, and this load is often
unpredictable.

To sum up, in this book, there will be no difference among
 real-time system (software), embedded system (software), and real-
time embedded system (software), which are collectively referred to
as real-time embedded system (software).

1.1.2 Features of Embedded Systems

As a special kind of computer application system, embedded system is a
special computer system with application as the center, computer tech-
nology as the basis, software and hardware can be tailored, and strict
requirements for function, real-time, reliability, cost, volume, and power
consumption. Compared with the traditional computer system, its main
features are as follows:

 1. Embedded systems are generally specialized.
In general, embedded system is not a general-purpose system, but

it is user- and application-oriented. In general, it will be combined

Embedded System and Software    ◾    9

with users and applications. It appears as a special system or module.
Its design, development, and tailoring of operating system are aimed
at meeting the requirements of specific fields and applications so as
to ensure minimum redundancy, maximum efficiency, and balanced
power consumption, and strive to obtain the best performance, such
as flight control system specially used for aircraft control, and con-
trol system of nuclear power plant or electric equipment.

 2. The software and hardware of the embedded system can be tailored.
As a special computer system, the main highlight of embedded

system is that embedded system can select the required contents
of software and hardware according to the actual needs, which has
great flexibility and selectivity.

 3. The embedded system is compact, and the kernel is small.
Considering the strict constraints of cost, resources, and space,

embedded systems often require to use as few resources as possible
on the premise of meeting the system requirements, and generally
support an open and scalable architecture. As a result, the kernel of
embedded operating system (EOS) is much smaller than that of gen-
eral operating system. For example, the kernel of OSE distributed
system of ENEA company can reach 5K, and it can achieve high per-
formance while greatly saving storage and running space.

 4. Embedded systems generally require high real-time performance.
In general, embedded systems have real-time requirements

because most embedded system application scenarios are harsh and
have strict requirements on time, volume, and power consumption.
The poor real-time performance of the system will lead to serious or
even disastrous consequences, such as nuclear power plant control,
spacecraft orbit entry, flight control, aeroengine control, and radar
target acquisition and recognition.

 5. The embedded processor is restricted by the application
requirements

The hardware and software of embedded system must be designed
efficiently, tailored and redundant, and strive to achieve higher perfor-
mance and efficiency on the same processor so as to be more competitive
in specific applications. Compared with the general-purpose processor,
the biggest difference of the embedded processor is that it uses most of
its work in the system designed for a specific user group and usually
has the characteristics of low power consumption, small volume, and

10    ◾    Embedded Software System Testing

high integration. It can integrate many tasks into the chip, which is con-
ducive to the miniaturization of the embedded system design, greatly
enhanced mobility and closer connection with the network.

In general, embedded microprocessors have the following four
characteristics:

• Using scalable architecture, the embedded microprocessor with
the highest performance can be developed most quickly.

• It has strong support for real-time multitasking, can complete
multitasking, and has short interrupt response time so as to min-
imize the execution time of internal code and real-time kernel.

• It has strong storage area protection functions because the soft-
ware structure of embedded systems has been modularized. To
avoid the wrong cross action between software modules, it is
necessary to design a powerful storage area protection function,
which is also conducive to software fault diagnosis.

• Embedded microprocessors must have low power consumption,
especially for battery-powered embedded systems in portable
wireless and mobile computing and communication devices. The
power consumption is only milliwatt or even micro watt.

 6. Embedded system software shall be solid and reliable.
Embedded system software is the key and core element to realize

the function of embedded system. To improve the software execution
speed and system reliability, embedded software is generally solidi-
fied in the memory chip or single chip microcomputer itself, rather
than stored in the carrier such as disk. Therefore, software coding
requires high quality, reliability, security, and real time.

 7. Embedded system needs special development tools and environment.
Embedded systems are widely used, but they have more require-

ments for cost, volume, and power consumption to be more skillfully
embedded in applications. The embedded system itself does not have
the ability of independent development. After the system is devel-
oped and solidified to a specific hardware (target machine), users
generally cannot modify it. Embedded system development is often
simulated on the general computer (host computer), debugged with
debugging and simulation tools, and finally downloaded and solidi-
fied through the linker.

Embedded System and Software    ◾    11

1.1.3 Composition of Embedded Systems

With the continuous development of technology, embedded systems have
become the product of the combination of advanced computer technology,
semiconductor technology, and electronic technology. This determines
that it must be a technology-intensive, capital-intensive, highly decentral-
ized, and innovative knowledge integration system. The general composi-
tion of embedded system is given in Figure 1.3.

As can be seen from Figure 1.3, the embedded system can be divided
into hardware and software:

• Similar to the ordinary PC system, the hardware part of the embed-
ded system usually includes high-performance microprocessor, I/O
interface, power management, memory, and peripheral circuits,
but it is still very different from the general PC system because the
embedded system is restricted by the application requirements in
terms of power consumption, volume, cost, reliability, speed, pro-
cessing capacity, and electromagnetic compatibility.

• The software part is the core of the function realization of embed-
ded system, which usually includes device driver, EOS, embed-
ded application program, and so on. The emergence of PC makes
desktop software develop rapidly, and the vigorous development of

FIGURE 1.3 Composition of embedded system.

12    ◾    Embedded Software System Testing

embedded software industry also provides infinite driving force for
system application. A wide variety of embedded products with com-
plex and changeable application scenarios provide more and more
convenience for human beings. Now people’s daily life cannot be
separated from embedded products.

In fact, not all embedded systems contain the above components. When
designing embedded systems, system designers will properly optimize and
combine the design according to system capability, application scenario,
power consumption, volume, real time, and other factors so as to achieve
the best performance and efficiency.

 1. Hardware layer
The hardware layer provides the operation platform of embedded

system, mainly including high-performance microprocessor, I/O
interface, timer, power management, memory, and peripheral cir-
cuits. The main instructions are as follows:

• Embedded microprocessor: As the core of embedded system
hardware layer, embedded processor undertakes the important
task of control system, which makes the host device intelligent,
flexible design and easy to operate. To complete these tasks rea-
sonably and efficiently, the general embedded processor should
have the following characteristics: strong real-time multi-task
support ability, memory protection function, scalable micro-
processor structure, strong interrupt processing ability, and
low power consumption. At present, the mainstream embedded
microprocessors include arm, MIPs, DSP, PowerPC, and x86.

• Memory: Embedded systems need memory to store and execute
code. The memory of embedded system includes cache, main
memory, and external memory. Cache is a memory array with
small capacity and high speed. The main goal of its design is to
reduce the memory access bottleneck caused by memory (such
as main memory and auxiliary memory) to the microprocessor
core so as to make the processing speed faster and more real
time. The main memory is located inside the microprocessor
and is used to store the program and data of the system and
users. Its on-chip memory has small capacity and fast speed.
External memory is used to store a large amount of program

Embedded System and Software    ◾    13

codes or information. It has a large capacity, but the reading
speed is much slower than that of memory. It is used to save user
information for a long time.

• General equipment interface and I/O interface: The interaction
between the embedded system and the outside world requires a
certain form of general equipment interface, such as A/D, D/A,
and I/O. The peripherals realize the input/output function of the
microprocessor by connecting with other devices or sensors out-
side the chip. Each peripheral usually has only a single function.
It can be outside the chip or built into the chip. There are many
kinds of peripherals, from a simple serial communication device
to a very complex 802.11 wireless device.

 2. Driver layer
The driver layer is an indispensable and important part of the

embedded system. The use of any external device needs the support
of the corresponding driver layer program. It provides the device
operation interface for the upper software. The upper software does
not need to pay attention to the specific internal operation of the
device, but only needs to call the interface provided by the driver
layer program. The driver layer program generally includes hardware
abstraction layer Hal, board-level support package BSP, and device
driver. The implementation functions of board-level support package
BSP generally include the following two aspects:

• When the system starts, complete the initialization of the hard-
ware. For example, set system memory, registers and device inter-
rupts, that is, determine which functions BSP should implement
according to the CPU type selected for embedded development,
hardware, and initialization of EOS.

• Provide drivers with access to hardware. The driver often accesses
the device register and operates on the device register. If the
whole system is uniformly addressed, the developer can directly
access the device register with the function of C language in the
driver. However, if the system is addressed separately, C language
cannot directly access the registers in the device, and only the
functions written in assembly language can access the registers
of peripheral devices. BSP is a function package that provides
upper-layer drivers with access to hardware device registers.

14    ◾    Embedded Software System Testing

 3. EOS layer
EOS layer is a kind of system software with a wide range of uses. It

is mainly responsible for the allocation and scheduling of all software
and hardware resources of the embedded system, and controlling
and coordinating concurrent activities. It must reflect the character-
istics of its system and be able to achieve the required functions of
the system by loading and unloading some modules.

Compared with the general operating system, EOS not only has
the most basic functions of the general operating system, such as task
scheduling, synchronization mechanism, interrupt processing, and
file processing, but also has the following characteristics:

• Strong real-time performance: EOS has strong real-time perfor-
mance and can be used for various equipment control.

• Loadability: Open and scalable architecture.

• Unified interface: Provides drive interfaces for various devices.

• It provides powerful network functions, supports MIL-STD-
1553B, ARINC429/629, TCP/IP protocol and other protocols,
provides TCP/UDP/IP/PPP protocol support and unified MAC
access layer interface, and reserves interfaces for various mobile
computing devices.

• Strong stability, weak interaction: Once the embedded system
starts running, it does not need too much user intervention,
which requires that the EOS responsible for system management
has strong stability. The user interface of EOS generally does not
provide operation commands. It provides services to user pro-
grams through system call commands.

• Solidification code: In the embedded system, the EOS and appli-
cation software are solidified in the ROM of the embedded system
computer. Auxiliary memory is rarely used in embedded systems.

• It can provide simple and friendly graphical user interface (GUI)
and graphical interface, which is easy to learn and use.

• Better hardware adaptability, that is, good portability.

At present, there are more than 40 kinds of EOSs commonly used for
embedded system development in the world. The mainstream EOS in the

Embedded System and Software    ◾    15

market include VxWorks, Palm OS, WindowsCE, PSOs, QNX, μC/OS-II,
and Symbian and embedded Linux.

 4. Application layer
As the top layer of the embedded system, the application layer is

mainly composed of multiple relatively independent application tasks,
which interact directly with the end user. It is generally customized
and developed according to the specific needs of the user. Each appli-
cation task completes specific functions, such as I/O task, calculation
task, communication task, and UI interaction. The EOS uniformly
schedules the operation of each task.

The application layer involves user experience, which is directly
related to whether the user needs are accurately realized. Therefore,
the design quality of the application layer directly determines the
success or failure of the whole embedded product. Therefore, the
quality and reliability of the software application layer software have
high requirements.

1.1.4 Application Fields of Embedded Systems

Different from general-purpose computer systems such as PC, embed-
ded systems usually perform predefined tasks with specific requirements.
Because the embedded system is only for some special tasks, designers can
optimize it and reduce the size and cost. Therefore, the embedded system is
usually suitable for mass production and reducing the single cost, and the
profit is greatly increased with the increase of the number of products sold.
With the upgrading of equipment manufacturing industry and the rapid
development and promotion of aerospace, industry 4.0, medical electron-
ics, smart home, logistics management, and power control, embedded sys-
tem has gradually become a standard product in many industries by using
its own technical characteristics. Because embedded systems have the
remarkable characteristics of high security, controllability, programma-
bility, low cost, and small volume, it has a very broad application prospect
in industrial manufacturing and daily life. The following selects typical
application fields for description.

 1. Smart city field
With the increasing development and popularization of Internet

of things technology, embedded systems have been widely used,
which has injected innovative elements into the intelligent network

16    ◾    Embedded Software System Testing

of smart city. The smart city first needs to realize the perception of
the Internet of things and cloud computing services that turn mas-
sive information into smart action. Internet of things technology
supports remote automatic meter reading, safety, fire prevention, and
anti-theft system of water, electricity, and gas meters. The embedded
special control chip will replace the traditional manual inspection
and achieve higher, more accurate, and safer performance. Taking
the smart home control system as an example, it can intelligently
control the household appliances and lighting in the residence, real-
ize family safety prevention, and provide residents with a warm,
comfortable, safe, energy-saving, advanced, and noble home envi-
ronment in combination with other systems, so that residents can
fully enjoy the convenience and wonderful life brought by modern
technology.

 2. Weapons and equipment field
Embedded computer systems have been widely used in military

and civil mechatronic products and industrial automation control
systems. Embedded system is mainly used for various signal process-
ing and control. It is used for various military electronic equipment
of the land, sea, and air forces such as various military weapon con-
trol, tanks, ships, and bombers, military communication equipment
such as radar and electronic countermeasure, and various special
equipment for field command and operation.

Typical applications of “embedded” systems in the military field
include flight control systems and engine control systems of various
aircraft and weapon systems, weapon test data acquisition and real-
time processing systems, and military handheld intelligent devices
(military PDA products). The wide application of the above embed-
ded systems plays an important role in improving the information
level, quality, and reliability of weapons and equipment.

 3. Intelligent transportation field
Intelligent transportation system (ITS) is not only an important

part of smart city but also suitable for the development trend of the
world. ITS is mainly composed of subsystems such as traffic informa-
tion collection, traffic condition monitoring, traffic control, informa-
tion release, and communication. All kinds of information are the
basis of ITS operation, and the embedded traffic management system
plays a vital role in ITS just like the nervous system in the human

Embedded System and Software    ◾    17

body. The embedded system is applied in speed radar (returning
digital speed value), transport fleet remote control command system,
vehicle navigation system, etc. in these application systems, and the
traffic data can be obtained, stored, managed, transmitted, analyzed,
and displayed so as to provide traffic managers or decision makers
with decision-making and research on the current situation of traffic
conditions.

ITS has strict requirements for products, and various advantages
of embedded system products can meet the requirements very well.
The application of embedded integrated intelligent products in the
field of intelligent transportation has been recognized by a more
number of people. Embedded system technology has been widely
used in vehicle navigation, flow control, information monitoring,
and vehicle service. Mobile positioning terminals embedded with
GPS and GSM modules have been successfully used in various trans-
portation industries.

 4. Intelligent medical treatment
Embedded systems have been widely used in the medical field. The

use of embedded systems and Internet of things technology can real-
ize the interaction between patients and medical personnel, medical
institutions, and medical equipment and gradually achieve the pur-
pose of timely and accurate communication. Embedded technology
will become the core of intelligent medical treatment in the future. Its
essence is to comprehensively apply sensor technology, RFID technol-
ogy, wireless communication technology, data processing technology,
network technology, video detection and identification technology and
GPS technology to the whole medical management system for informa-
tion exchange and communication so as to realize intelligent identifica-
tion, positioning and tracking.

In the near future, the medical industry will integrate more high
technologies such as artificial intelligence and sensing technology so
as to make medical services intelligent in real sense and promote the
prosperity and development of medical undertakings. In the near
future, smart medicine will enter the lives of ordinary people.

 5. Environmental engineering field
With the increasing impact of human life on the environment,

our environment has been disturbed by many factors such as climate
warming, industrial pollution, and agricultural pollution. Under the

18    ◾    Embedded Software System Testing

traditional manual detection, it is impossible to realize the real-time
monitoring and management of large-scale environment. The embed-
ded system has many applications in environmental engineering, such
as real-time monitoring of hydrological data, flood control system and
water and soil quality, earthquake monitoring, and real-time meteo-
rological information. The water source and air pollution monitoring
will be realized by using the latest technology. In many areas with bad
environment and complex ground conditions, the embedded system
will realize unmanned monitoring which can greatly improve the effi-
ciency and effectiveness of environmental monitoring.

 6. Robot field
The development of robot technology and embedded system has

been closely linked. The earliest robot technology was the numerical
control technology proposed by MIT in the 1950s. At that time, it
was far from reaching the chip level, just a simple NAND gate logic
circuit. Since then, due to the slow development of processor and
intelligent control theory, robot technology has not been fully devel-
oped from the 1950s to the early 1970s.

Recently, due to the high development of embedded processors,
robots have shown a new development trend from hardware to soft-
ware. The development of embedded chip will make the robot have
more obvious advantages in miniaturization and intelligence. At the
same time, it will greatly reduce the cost of the robot and make it
more widely used in industrial and service fields.

 7. Intelligent vehicle field
Intelligent vehicle is a comprehensive intelligent system integrating

environmental perception, planning and decision-making, multi-level
auxiliary driving and other functions. It is a typical high-tech complex
with the centralized use of computers, sensing, information fusion,
communication, artificial intelligence, and automatic control.

In recent years, the frequent occurrence of traffic accidents has
made the intelligent vehicle operating system a new market demand.
Through advanced electronic technology, drivers can drive more
safely. The embedded system will be applied to the intelligent tem-
perature control of automobile, automobile MCU system, on-board
entertainment system, intelligent navigation, intelligent driving, and
automobile radar management so as to effectively improve the intel-
ligent level and safety of automobile.

Embedded System and Software    ◾    19

	 8.	Industrial automation field
As a national strategy, industry 4.0 has been gradually promoted. It

is a general trend to apply automation technology to realize industrial
production and management in the future, and embedded systems
are one of the key technologies. Various intelligent measuring instru-
ments, numerical control devices, programmable controllers, control
machines, distributed control systems, fieldbus instruments and con-
trol systems, industrial robots, mechatronics mechanical equipment,
automotive electronic equipment, etc. are needed in industrial auto-
mation. They will widely adopt microprocessor/controller chip level,
standard bus template level, and system-embedded system.

1.2  OVERVIEW OF EMBEDDED SOFTWARE
1.2.1  Embedded Software Classification

As the soul of embedded system, embedded software refers to the software
collection used to control and manage system functions in embedded sys-
tem. In general, there are two classification methods for embedded soft-
ware, as shown in Figure 1.4.

embedded software
classification

by level by program
structure

system

software

support

software

application

software

dri
ver

emb
edd
ed

oper
atin

g
syst
em

emb
edd
ed

mid
dle
war

e

syst
em
anal
ysis
tool

s

sim
ulati
on
dev
elop
men

t
tool

s

test
tool

s

cro
ss

dev
elo
pm
ent
too
ls

mo
bile
ter
mi
nal
sof
twa
re

rou
ter
sof
twa
re

flig
ht

con
trol
sof
twa
re

train
cont
rol

syst
em
soft
war

e

single threaded
program event driver

poll
ing
Loo

p

finit
e

stat
e

mac
hine
syst
em

int
err
upt
dri
ve
sys
te
m

mu
ltit
ask
sys
te
m

singl
e

mac
hine
mult
itask
syst
em

distri
bute

d
syste

m

FIGURE 1.4  Embedded software classification.

20    ◾    Embedded Software System Testing

 1. Divide according to the software level.
According to the level of software in embedded system, embedded

software is divided into system software, support software and appli-
cation software. The specific description is as follows:

 1. System software
System software refers to the software used to control and

manage computer system resources in the embedded system,
and mainly refers to the EOS. The mainstream EOSs include
Windows CE, Palm OS, Linux, VxWorks, PSOs, QNX, OS-9, and
LynxOS. The EOS in China started late. Such products in China
are mainly Linux operating systems based on independent copy-
right, and among them, ZHONGSOFT Linux, Hongqi Linux,
and Dongfang Linux are the representatives.

 2. Support software
Support software refers to the software tool set used to assist

software development, including embedded database, system
analysis tools, system simulation tools, cross development tools,
and software testing tools. At present, the mainstream embed-
ded mobile database systems include Sybase and Oracle. China’s
embedded mobile database system started relatively late. At pres-
ent, it is represented by open-base Mini researched and devel-
oped by Neusoft group.

 3. Application software
Application software is a user experience-oriented application

program in an embedded system. It is generally aimed at spe-
cific application fields and based on a fixed hardware platform
to achieve the expected goal of users. Embedded application
software not only requires its accuracy, security, and stability to
meet the needs of practical application but also needs to be opti-
mized as much as possible to reduce the consumption of system
resources and reduce the hardware cost. At present, a variety of
embedded application software have appeared in China’s market,
including all kinds of mobile terminal software, router software,
switch software, flight control software, navigation system soft-
ware, train control system software, browser, email software, and
word processing software. Application software in embedded
systems are the most active force. Each application software has

Embedded System and Software    ◾    21

a specific application background. Although it is small in scale, it
is highly professional. Therefore, embedded application software
is not subject to the monopoly of foreign products like operat-
ing systems and support software. It is the advantageous field of
embedded software in China.

 2. Divide according to the software structure.
According to the structure of embedded software, embedded soft-

ware can be divided into single thread program and event driver.

 1. Single thread program
Single thread program is the simplest embedded software.

It does not need multitask scheduling or interrupt service pro-
gram. It has no main control program and can be further divided
into a circular polling system and finite state machine system.
The advantages of single thread program are simple structure,
high execution efficiency, and convenient program maintenance.
The disadvantages are poor fault tolerance. Once a software fault
occurs, the system cannot recover and carry out fault tolerance
processing, resulting in poor software security. It is generally
suitable for simple applications with low requirements for real
time and security.

 2. Event-driven program
Event-driven program is an embedded application more com-

plex than single thread program. It can solve the problem of soft-
ware security and fault tolerance. It can be generally divided into
an interrupt driver system and multitask system, while multitask
system can be divided into single machine multitask system and
distributed system.

• The interrupt-driven program considers the interrupt prior-
ity to solve the problem of program fault tolerance. When
multiple interrupt service requests occur at the same time,
and each interrupt priority or handler error needs to be con-
sidered, the main control program will process each interrupt
request in real time according to the established strategy to
meet the needs of system design.

• Multitasking systems are often developed based on EOSs,
which means that in a multitasking environment, a running

22    ◾    Embedded Software System Testing

program can obtain processor time only when other programs
are approved. Each application (task) must collaboratively
give up control of the processor so that other applications can
run. At present, the mainstream EOSs support cooperative
multitasking and preemptive multitasking. If necessary, the
EOS can interrupt the currently running task to run another
task. Through the above operations, task switching, schedul-
ing, communication, synchronization, mutual exclusion, and
complex clock management can be realized so as to greatly
improve the fault tolerance and security of the embedded sys-
tem, and enable users to obtain the best use experience and
complete the established tasks or functions.

• With the increasingly complex requirements of embedded
systems, the requirements for embedded software are becom-
ing higher and higher, and the application scenario and archi-
tecture of software are becoming increasingly complex. At
present, more and more embedded systems adopt distributed
architecture to solve key problems such as multi-user concur-
rency, parallel processing, node load balancing, and distrib-
uted fault tolerance through distributed computing.

1.2.2 Embedded Operating Systems

 1. Development of EOS
As a special kind of embedded software, EOS is widely used and has

a special mission. Other applications are based on EOSs. EOS is the
first program to execute after system reset. It is mainly responsible for
the allocation and scheduling of all software and hardware resources
in the system, and controlling and coordinating concurrent activities.
It encapsulates CPU clock, interrupt, timer memory, and I/O and pro-
vides users with a standard AP interface. In addition, it must reflect the
characteristics of its system and be able to achieve the required func-
tions of the system by loading and unloading some modules.

The early embedded system had single function and simple con-
trol, so it did not need the EOS. However, with the increasingly com-
plex function and structure of the embedded system and the higher
requirements for reliability, security, volume, and power consumption,
the EOS gradually appeared. Through the EOS, the tasks complete
the switching and management, synchronization, mutual exclusion.

Embedded System and Software    ◾    23

The organic integration of interrupt management greatly improves
the performance and efficiency of embedded system.

Embedded systems originated in the 1960s. The control of elec-
tronic mechanical telephone exchange in communication system
was called “stored program control system” at that time, and the real
development of embedded computer was after the advent of micro-
processor. In November 1971, Intel successfully integrated arithme-
tic unit and controller circuit for the first time, and launched the
world’s first microprocessor Intel 4004 (size 3 mm) × 4 mm, with 16
pins in the outer layer and 2300 transistors in the inner layer, using
a 10-micron process). Since then, various manufacturers have suc-
cessively launched many 8-bit and 16-bit microprocessors, including
Intel 8080/8085 and 8086, Motorola 6800 and 68000, and ZILOG
Z80 and z8000. The system with these microprocessors as the core is
widely used in weapons and equipment, instruments, medical equip-
ment, robots, household consumer electronics, and other fields. With
the wide application of microprocessors, a broad embedded applica-
tion market has gradually formed. Computer manufacturers begin
to provide users with OEM products in the form of plug-ins, and
then users choose a set of suitable CPU board, memory board, and
various I/O plug-in boards according to their own needs so as to
form a special embedded computer system, and embed it into its own
system equipment.

First, to be flexible and compatible, a series and modular single
board computer has emerged. Popular single board computers
include ISBC series of Intel company and MCB of ZILOG com-
pany. Later, people can design a special embedded computer without
selecting chips. Instead, they can build a special computer system
as long as they select each functional module. Users and developers
hope to buy the most suitable OEM products from different manu-
facturers and insert them into the purchased or self-made chassis to
form a new system. In this way, they hope that the plug-ins are com-
patible with each other, which leads to the birth of industrial control
microcomputer system bus. In 1976, Intel introduced multibus, and
in 1983, it was expanded to multibus II with a bandwidth of 40MB/s.
The simple STD bus designed by Prolog in 1978 is widely used in
small embedded systems.

The 1980s can be said to be the era of the rise of many heroes.
Embedded industrial products based on single chip microcomputer

24    ◾    Embedded Software System Testing

and DSP have gradually become the protagonist of embedded con-
trol in various fields. With the improvement of microelectronic
technology, integrated circuit manufacturers began to integrate the
microprocessor, I/O interface, A/D, D/A conversion, serial interface,
ram, ROM, and other components required in embedded applica-
tions into one VLSI so as to manufacture the micro controller for I/O
design, which is commonly known as single chip microcomputer.
It has become a rising star of embedded computer system, and the
subsequent DSP products have further improved the technical level
of embedded computer system and quickly penetrated into various
fields such as national defense and military, consumer electronics,
medical electronics, intelligent control, communication electronics,
instruments and meters, transportation, and so on.

In the 1990s, driven by the huge demand for distributed control,
flexible manufacturing, digital communication and information
appliances, embedded systems further accelerated their develop-
ment. DSP products for real-time signal processing algorithms are
developing toward high speed, high precision, and low power con-
sumption. The third-generation DSP chip TMS320C30 launched
by Texas Instruments guides the development of microcontrollers
to 32-bit high-speed intelligence. In terms of application, handheld
computer, handheld PC, and set-top box technology are relatively
mature and develop rapidly. In particular, there were few brands of
handheld computers in the U.S. market in 1997. At the end of 1998,
all kinds of handheld computers sprung up one after another. In
addition, Nokia launched smart phones, Siemens launched set-top
boxes, Wyse launched smart terminals, and national semiconductor
(incorporated into Texas Instruments) launched webpad. The small
computer loaded on the car can not only control various equipment
in the car (such as audio) but also connect with GPS to automatically
control the car.

In the 21st century, mankind has really entered the era of net-
working. It is bound to be an important direction for the develop-
ment of embedded systems to apply embedded computer systems
to all kinds of networks. The function, interface, and scalability of
EOSs are becoming increasingly powerful, which can well adapt to
the current networked operation scenario. With the development
and popularization of new technologies such as cloud computing,
big data, and artificial intelligence, EOS will obtain greater and wider

Embedded System and Software    ◾    25

applications and developments in the future. As an essential compo-
nent in the future embedded system, the development trend of EOS
mainly includes:

• Customization: the EOS will provide a simplified system call
interface for specific applications and specifically support one
or a class of embedded applications. EOS will have scalable and
reducible system architecture, and provide multi-level system
architecture. The EOS will include various plug-and-play device
driver interfaces.

• Networking: facing the network and specific applications, the
EOS is required to be equipped with a standard network com-
munication interface. The development of EOS will be easier and
easier to transplant and network. The EOS will have network
access function, provide TCP/UDP/IP/PPP protocol support and
unified MAC access layer interface, and reserve interfaces for
various mobile computing devices.

• Energy saving: the EOS continues to adopt micro kernel technol-
ogy to realize small size, micro power consumption, and low cost
to support small electronic devices. At the same time, it improves
the reliability and maintainability of products. The EOS will form
the minimum kernel processing set, reduce the system overhead,
improve the operation efficiency, and can be used for various
non-computer devices.

• Intellectualization: through the close combination with artificial
intelligence technology, the EOS will provide a sophisticated,
easy to operate, simple interface and personalized multimedia
human-computer interaction interface to meet the increasing
user needs and improve the user experience.

• Security: the EOS should be able to provide a security mechanism,
and the reliability of the source code is getting higher and higher.

• Standardization: with the wide application and development
of EOS and the increasing opportunities for information and
resource sharing, it is necessary to establish corresponding stan-
dards to standardize its application, which should be easy to cut
and scale so as to better adapt to different application scenarios
and user needs.

26    ◾    Embedded Software System Testing

 2. Introduction of typical EOS
Combined with the current development status of embedded sys-

tem and mainstream application market, the following describes
the typical EOS. Limited to space, only the main operating system
information is given. Readers who are interested can consult relevant
online or offline resources.

 1. VxWorks
VxWorks operating system is an embedded real-time oper-

ating system (RTOS) designed and developed by American
WinDriver company in 1983. It is a key part of tornado embed-
ded development environment. Tornado is a set of RTOS
development environment launched by WinDriver company,
which is similar to Microsoft Visual C, but provides richer
debugging and simulation environments and tools. Good sus-
tainable development ability, high-performance kernel, and
friendly user development environment make VxWorks gradu-
ally occupy a place in the field of embedded RTOS. At present,
VxWorks has been widely used in data network, remote com-
munication, medical equipment, transportation, aviation, and
other fields.

The features of VxWorks are as follows:

– It has a tailorable microkernel structure.

– Efficient task management.

– Strong debugging ability.

– The software can be simulated and debugged through the
software debug function.

– Flexible inter task communication.

– Microsecond interrupt processing.

– Rich function library.

– Support POSIX 1003 1B real-time extension standard.

– Support multiple physical media.

– Standard and complete TCP/IP network protocol support,
etc.

Embedded System and Software    ◾    27

 2. Windows CE
Windows CE is an open and scalable 32-bit EOS developed

by Microsoft. It is an electronic device operating system based
on handheld computers. Windows CE has good compatibility
with windows series, which is undoubtedly a major advantage of
Windows CE promotion.

The graphical user interface (GUI) of Windows CE is excel-
lent where C in CE represents compact, consumer, connec-
tivity, and companion and E stands for electronics. Different
from Windows 95/98 and Windows NT, Windows CE is a new
EOS with all source codes developed by Microsoft. Although
its operating interface comes from Windows 95/98, Windows
CE is a new information equipment platform redeveloped based
on Win32 API. Windows CE is modular, structured, based on
Win32 Application Program Interface, and processor indepen-
dent. Windows CE not only inherits the traditional windows
graphical interface but can also use the programming tools on
Windows 95/98 (such as Visual Basic and Visual C++), use the
same functions and use the same interface grid on Windows CE
platform, so that most application software can continue to be
used on Windows CE platform with simple modification and
transplantation.

The design goals of Windows CE are modularity and scalabil-
ity, good real-time performance, strong communication ability,
and support a variety of CPUs. Its design can meet the needs of
a variety of equipment, including industrial controllers, commu-
nication hubs, and enterprise equipment such as sales terminals,
as well as consumer products such as cameras, telephones, and
home entertainment equipment. A typical embedded system
based on Windows CE is usually designed for a specific purpose
and works without being online. It requires that the operating
system used is small and has a built-in response to interruptions.

Features of Windows CE are as follows:

– It has flexible power management functions, including instant
sleep/wake-up mode.

– Object store technology is used, including file system (FS),
registry, and database. It also has many high-performance
and efficient operating system features, including on-demand

28    ◾    Embedded Software System Testing

page change, shared storage, cross processing synchroniza-
tion, and support for large capacity heap.

– Good communication skills. It widely supports various com-
munication hardware, direct local area connection and dial-
up connection, provides connection with PC, intranet, and
Internet, and provides the best integration and communica-
tion with Windows 9x/NT.

– Nested interrupts are supported. Allow higher priority inter-
rupts to be responded to first, rather than waiting for lower
level ISR to complete. This makes the operating system have
the real-time performance required by the EOS.

– Better thread responsiveness. The upper limit of response time
for high-level IST (interrupt service thread) is more stringent.
The improvement in thread response ability helps developers
master the specific time of thread conversion and helps them
create new embedded applications through enhanced moni-
toring ability and hardware control ability.

– 256 priorities. It can make developers have more flexibility
in controlling the timing arrangement of embedded systems.

– Windows CE API is a subset of Win32 API and supports
nearly 1500 Win32 APIs. With these APIs, you can write
any complex application. Of course, in Windows CE system,
the API provided can also be determined according to the
requirements of specific applications.

 3. Embedded Linux
Linux originated from a hobbyist named Linus Torvalds in

Finland, and now it is one of the most popular open-source oper-
ating systems. Linux has developed into a powerful and well-
designed operating system in just 10 years since its advent in 1991.
With the progress of network technology, Linux OS has become a
strong opponent of Microsoft’s DOS and Windows 95/98. Linux
system can not only run on PC platform but also shine in embed-
ded system. With the rapid development of various embedded
Linux OS, it has gradually formed a platform that can be com-
pared with VxWorks, Windows CE μC/OS-II and other EOS.
Linux has become an ideal choice for embedded operation. Its

Embedded System and Software    ◾    29

biggest feature is that its source code is open and follows the
General Public License (GPL) protocol. In recent years, Linux has
been a research hotspot in the field of embedded development.
According to the prediction of International Data Group (IDG),
Embedded Linux will account for more than 50% of the share
of EOSs in the future. According to preliminary statistics, about
45% of the embedded systems under development have selected
Linux as the EOS, which shows the vitality of Linux and the rec-
ognition of many developers. The main reasons are as follows:

– Because its source code is open, developers can modify it at
will to meet their own application needs and ensure that error
detection and correction are easy and timely through cor-
responding test auxiliary tools. GPL compliance eliminates
the need to pay a license fee for each embedded application.
In addition, the Linux development community has a large
number of application software to choose from and use. Most
of these software comply with GPL, are open-source and free,
and can be applied to their own systems after a little modi-
fication. A large number of free, excellent, and open-source
development tools and a large group of developers have
brought infinite vitality to Linux development.

– As long as you understand UNIX/Linux and C language and
master the principles and methods of embedded develop-
ment, you can start developing your own embedded system
applications. With the popularity of Linux in China, there are
more and more such talents, so the cost of software develop-
ment and maintenance is low.

– Linux kernel is lean and requires less resources, so it is very
suitable for embedded system development. In addition,
Linux supports a large number of hardware. There is no
essential difference between embedded Linux and ordinary
Linux. Almost all the hardware used on PC supports embed-
ded Linux, and the driver source code of various hardware
can be easily obtained, which brings great convenience for
users to write their own proprietary hardware drivers.

One disadvantage of running Linux on embedded sys-
tem is that the Linux system needs to add real-time software

30    ◾    Embedded Software System Testing

modules to provide real-time performance, and the kernel
space of these modules is the part of the operating system to
realize scheduling strategy, hardware interrupt exception and
execution program. Because these real-time software mod-
ules run in kernel space, code errors may destroy the oper-
ating system and affect the reliability of the whole system,
which will be a serious weakness for real-time applications.

Hongqi embedded Linux developed by Zhongke Hongqi
Software Technology Co., Ltd. is becoming one of the first
choices of many embedded equipment manufacturers in
China. Hongqi company has successively launched embed-
ded Linux systems for PDA, set-top box, thin client, and
switch and put them into practical application.

Taking Hongqi embedded Linux as an example, the char-
acteristics of embedded Linux are as follows:

– It provides compact kernel, high performance, stability,
and multitasking.

– It is applicable to different CPUs and supports a variety of
architectures, such as x86, arm, MIPs, alpha, and SPARC.

– It can provide perfect embedded GUI and embedded
X-Windows.

– It provides embedded browser, mail program, MP3 player,
MPEG player, notepad, and other applications.

– It provides complete development tools and SDK and pro-
vide the development version on PC.

– Users can customize and provide graphical customiza-
tion and configuration tools.

– The driver set of commonly used embedded chips sup-
ports a large number of peripheral hardware devices with
rich drivers.

– For embedded storage solutions, it provides real-time ver-
sion and perfect embedded solutions.

– It provides perfect Chinese support, strong technical sup-
port, and complete documents.

Embedded System and Software    ◾    31

– It provides open-source, rich software resources, exten-
sive support from software developers, low price, flexible
structure, and wide application.

 4. μC/OS-II
μC/OS-II is developed on the basis of μC/OS, and it is a com-

pact and preemptive multitasking real-time kernel written in C
language. μC/OS-II can manage 64 real-time tasks and provide
functions such as task scheduling and management, memory
management, synchronization and communication between tasks,
time management, and interrupt service. It has the characteristics
of high execution efficiency, small space, excellent real-time per-
formance, and strong scalability. Therefore, it also occupies a large
market share in the field of embedded development.

In terms of FS support, μC/OS-II is a small and medium-sized
embedded systems. Even if it contains all functions, the compiled
kernel is less than 10 KB, so the system itself does not provide
support for FSs. However, μC/OS-II has good scalability. You can
also add FS-related content if necessary.

In terms of hardware support, μC/OS-II can support most popu-
lar CPUs because the kernel of μC/OS-II is very small, the mini-
mum code after cutting can reach 2KB, and the minimum data
RAM space required is 4KB. The migration of μC/OS-II is relatively
simple. You only need to modify the code related to the processor.

The main features of μC/OS-II are as follows:

– Open-source code: after expansion, it is easy to transplant the
operating system to different hardware platforms.

– Portability: most of the source code is written in C language,
which is easy to transplant to other microprocessors.

– Curable.

– Tailoring, selectively using the required system services to
reduce the required storage space.

– Preemptive, completely preemptive real-time kernel, that is,
the task with the highest priority under the condition of run-
ning readiness.

– Multi-task: 64 tasks can be managed, the priority of tasks
must be different, and the time slice rotation scheduling
method is not supported.

32    ◾    Embedded Software System Testing

– Determinacy: the execution time of function call and service has
its determinacy, which does not depend on the number of tasks.

– Practicability and reliability: the example of successful appli-
cation of the real-time kernel is the best evidence of its prac-
ticability and reliability.

– Because μC/OS-II is only a real-time kernel, which means
that unlike other real-time existence systems, it only provides
users with some API function interfaces, and there is still a lot
of work to be completed by users themselves.

In conclusion, μC/OS-II is an EOS kernel with simple struc-
ture, complete functions, and strong real-time performance. It
is very suitable for CPUs without MMU function. It requires
very little kernel code space and data storage space, has good
real-time performance and good scalability, and is suitable to
be transplanted to various CPU platforms because the source
code is open-source and the online development community
and forum have a lot of materials and application examples.

 5. Palm OS
Palm is a product of 3Com company, and its operating system

is Palm OS. Palm OS is a 32-bit EOS. Palm provides serial com-
munication interface and infrared transmission interface, which
can easily communicate and transmit data with other external
devices. With an open OS application program interface, devel-
opers can develop their own applications as needed. Palm OS
is an open system with strong technology. Now there are about
thousands of applications specially written for Palm OS. From
the perspective of program content, Palm OS covers everything
from personal management and games to industry solutions.
With the support of rich software, the functions of Palm OS–
based handheld computers have been continuously expanded.

Palm OS is a set of OS specially developed for handheld com-
puters. When writing programs, Palm OS fully considers the rel-
atively small memory of handheld computers, so it only occupies
a little memory. Since the space occupied by applications written
based on Palm OS is also very small (usually only tens of KB),
Palm OS–based handheld computers (although only a few MB of
RAM) can run many applications.

Embedded System and Software    ◾    33

Because Palm products are characterized by simple use and
light body, the main features of Palm OS are as follows:

– Energy-saving function of operating system. The power sup-
ply required by the handheld computer is as small as possible.
Therefore, in the Palm OS application, if there is no event
running, the system equipment will enter the state of doze. If
the application is not active for a period of time, the system
automatically enters the sleep state.

– Reasonable memory management. Palm’s memory is all read-
write fast RAM. Dynamic RAM is similar to RAM on PC.
It provides temporary storage space for global variables and
other data that do not need to be permanently saved. Storage
RAM is similar to the hard disk on a PC and can permanently
save applications and data.

– Palm OS data is stored in a database format. A database
consists of a set of records and some database header infor-
mation. To ensure program processing speed and memory
space, when processing data, Palm OS does not copy the
data from storage heap to dynamic heap for processing, but
directly processes it in storage heap. To avoid calling the
memory address incorrectly, Palm OS stipulates that all
this must be implemented by calling the API in its memory
manager.

The combination of Palm OS and HotSync software can
synchronize the information on the handheld computer and
PC and expand the functions of desktop to the handheld
computer. Palm has a wide range of applications, such as
contact and worksheet management, email and Internet
communication, and salesperson and group automation.
Palm is also rich in peripheral hardware, including digi-
tal camera, GPS receiver, modem, GSM wireless phone,
digital audio playback equipment, portable keyboard, voice
recorder, bar code scanning, wireless paging receiver, and
detector. The application of palm combined with GPS can
not only be used for navigation and positioning but also
be combined with GPS for climate monitoring, place name
survey, etc.

34    ◾    Embedded Software System Testing

 6. μClinux
μClinux is an excellent embedded Linux version. Its full name is

micro control Linux, which literally refers to micro control Linux.
Compared with standard Linux, the kernel of μClinux is very small,
but it still inherits the main characteristics of Linux operating sys-
tem, including good stability and portability, powerful network
functions, excellent FS support, rich standard APIs, and TCP/IP
network protocol. Because there is no MMU memory management
unit, its multitasking implementation requires some skills.

μClinux inherits the multi-task implementation mode of
standard Linux in structure. It is divided into real-time process
and ordinary process. It adopts first come first service and time
slice rotation scheduling, respectively. It is improved only for the
characteristics of medium and low-grade embedded CPU, does
not support kernel preemption, and has general real-time per-
formance. In addition, μClinux has complex structure, relatively
difficult transplantation, large kernel, and poor real-time perfor-
mance. If the developed embedded products pay attention to file
system and network application, μClinux is a good choice.

In conclusion, μClinux’s biggest feature is that it is designed
for a processor without MMU, which is suitable for STM32F103
without MMU function. However, transplanting this system
requires at least 512KB RAM space and 1MB ROM/flash space,
while stmf103 has 256K flash and needs external memory, which
increases the cost of hardware design.

 7. eCos
eCos, that is, embedded Configurable operating system. It is an

open-source, configurable, and portable RTOS for deep embed-
ded applications. Its main characteristics are as follows:

– eCos is characterized by flexible configuration and modular
design. The core part is composed of small components, includ-
ing kernel, C language library, and bottom running package.

– Each component of eCos can provide a large number of
configuration options (real-time kernel can also be used as
optional configuration). It can be easily configured by using
the configuration tools provided by eCos, and eCos can meet
different embedded application requirements through differ-
ent configurations.

Embedded System and Software    ◾    35

– The configurability of eCos operating system is very power-
ful. Users can join the required FS by themselves. eCos oper-
ating system also supports most of the popular embedded
CPUs. eCos operating system can be transplanted between 16
bit, 32-bit, and 64-bit architectures.

– Because the kernel of eCos is very small, the minimum code
can be 10 KB after cutting, and the minimum data RAM
space required is 10 KB.

– In terms of system transplantation, the portability of eCos
operating system is very good, which is better than μC/OS-II
and μClinux is easy.

In conclusion, eCos is characterized by flexible configuration
and supports the migration of CPU without MMU. It is open
source and has good portability. It is also more suitable for trans-
plantation to the CPU of STM32 platform. However, The applica-
tion of eCOS is not yet as widespread as μC/OS-II and and there
is limited literature available. eCos is suitable for some commer-
cial or industrial cost-sensitive embedded systems, such as some
applications in the field of consumer electronics.

 8. FreeRTOS
FreeRTOS is a mini RTOS kernel. As a lightweight operat-

ing system, its functions include task management, time man-
agement, semaphore, message queue, memory management,
recording function, software timer, and collaboration, which can
basically meet the needs of small systems.

The main features of FreeRTOS are as follows:

– Since RTOS needs to occupy certain system resources (espe-
cially ram resources), only a few RTOSs such as μC/OS-II,
embOS, salvo, and FreeRTOS can run on a small RAM single
chip microcomputer.

– Compared with commercial operating systems such as μC/
OS-II and embOS, FreeRTOS operating system is a completely
free operating system. It has the characteristics of open source,
portability, reduction, and flexible scheduling strategy. It can
be easily transplanted to various single chip computers.

– FreeRTOS kernel supports priority scheduling algorithm.
Each task can be given a certain priority according to its

36    ◾    Embedded Software System Testing

importance. The CPU always lets the task in ready state and
with the highest priority run first.

– FreeRTOS kernel also supports rotation scheduling algo-
rithm. The system allows different tasks to use the same pri-
ority. When there is no higher priority task ready, tasks with
the same priority share CPU usage time.

Compared with common μC/OS-II and other EOSs,
FreeRTOS operating system has both advantages and disad-
vantages. The main shortcomings of FreeRTOS are as follows:

– In terms of system service function, FreeRTOS only provides the
implementation of message queue and semaphore, and cannot
send messages to message queue in the order of last in first out.

– FreeRTOS is only an operating system kernel, which needs to
expand the third-party GUI, TCP/IP protocol stack, and file
system to realize a more complex system.

 9. mbed OS
As an open-source EOS, arm company provides mbed OS to

all manufacturers for free. Mbed provides a relatively more sys-
tematic and comprehensive intelligent hardware development
environment.

– Main functions of mbed OS: provides a general operating sys-
tem basis for developing Internet of things devices to solve
the fragmentation of embedded design; supports all impor-
tant open standards for connectivity and device management
to achieve future oriented design; enables secure and scal-
able edge devices to support new processing capabilities and
functions; and solves complex energy consumption problems
through automatic power management.

– The main features of mbed OS: fast development speed, pow-
erful function, and high security. It is designed for mass pro-
duction. It can be developed offline or edited on the web page.

 10. RTX
RTX is an embedded RTOS of the arm company. It is written

with standard C structure and compiled with RealView compiler.
It is not only a real-time kernel but also has rich middle tier com-
ponents. It is not only free but also the code is open.

Embedded System and Software    ◾    37

– Main functions: start and stop tasks (processes). In addi-
tion, it also supports process communication, such as task
synchronization, management of shared resources (periph-
erals or memory), and message transmission between tasks.
Developers can use basic functions to start the real-time run-
ner, start and end tasks, and transfer control between tasks
(round robin scheduling).

– Main features: support time slice, preemptive, and coopera-
tive scheduling. There is no limit to the number of tasks, and
each task has a priority of 254; unlimited number of sema-
phores, mutually exclusive semaphores, message mailbox,
and soft timer; and support multithreading and thread safe
operation. Using the MDK dialog–based configuration wiz-
ard, you can easily complete the MDK configuration.

 11. QNX
QNX, born in 1980, is a commercial UNIX like embedded

RTOS conforming to POSIX specification.

– Main functions of QNX: supports the simultaneous scheduling
and execution of multiple tasks on the same computer; multiple
users can also share a computer. These users can submit tasks to
the system through multiple terminals and interact with QNX.

– Main features: the core only provides four services: process
scheduling, inter process communication, underlying net-
work communication, and interrupt processing. Its processes
run in an independent address space. All other OS services
are implemented as collaborative user processes, so the QNX
core is very small (qnx4. X is about 12KB) and runs very fast.

 12. NuttX
NuttX is an embedded RTOS. The first version was released by

Gregory Nutt under a loose BSD license in 2007.

– Main functions: it can be built as an open and flat embed-
ded RTOS, or a micro kernel with system call interface can
be built separately. It can be easily extended to a new proces-
sor architecture, SoC architecture or board-level architecture;
real time, deterministic and support priority inheritance; BSD
socket interface; extension of priority management; optional
tasks (processes) with address environment, etc.

38    ◾    Embedded Software System Testing

– Main features: flexible configuration and modular design. The
core part is composed of small components, including kernel,
C language library, and bottom running package. Each com-
ponent can provide a large number of configuration options
(real-time kernel can also be used as optional configuration).
It can be easily configured by using the configuration tools
provided by eCos, and eCos can meet different embedded
application requirements through different configurations.

 13. SylixOS
The EOS SylixOS was born in 2006. It is an open-source cross

platform large-scale RTOS. After more than ten years of continu-
ous development, SylixOS has become one of the most comprehen-
sive domestic operating systems. Its main features are as follows:

– SylixOS is a RTOS whose kernel is completely written by
Chinese people. The relevant kernel code is open source, and
the source code autonomy rate is scanned in the Ministry of
Industry and Information Technology. The kernel code auton-
omy rate is 100%, and the autonomy rate of all codes is 89.1%.

– The open-source community has rich free software, which is
very convenient for transplantation.

– The interface is compatible with POSIX standard. At pres-
ent, there are many product and project application cases,
involving aerospace, military defense, rail transit, smart grid,
industrial automation, and many other fields.

1.3 SUMMARY
In this chapter, we systematically introduce the characteristics and com-
position of embedded system and real-time system, give the classification
of embedded software, sort out the development process of EOS and typi-
cal EOS, and provide necessary background and technical description for
readers to establish the basic concepts of embedded system and embedded
software.

39

C h a p t e r 2

Embedded Software
Engineering and Quality
Characteristics

Software engineering is an engineering methodology that guides
the development and maintenance of computer software. It is a disci-

pline that studies the construction and maintenance of effective, practical,
and high-quality software with engineering methods. This chapter will
use limited space to introduce the embedded software engineering process
and management technology, and finally give the quality characteristics of
embedded software.

2.1 EMBEDDED SOFTWARE ENGINEERING
IEEE has the following definitions in the glossary of software engineering
terms:

Software engineering is: (ADS2) Applying engineering methods to soft-
ware processes, that is, applying systematic, strictly constrained, and quan-
tifiable methods to software development, operation, and maintenance;
RT-LAB/ATB:RT-LAB research on the method described in (ADS2). The
software engineering aims to develop software products with applicabil-
ity, effectiveness, modifiability, reliability, understandability, maintain-
ability, reusability, portability, traceability, interoperability, and meeting
user needs under the premise of given cost and schedule. Pursuing these
goals will help improve the quality and development efficiency of software

DOI: 10.1201/9781003390923-3	

https://doi.org/10.1201/9781003390923-3

40    ◾    Embedded Software System Testing

products and reduce the difficulty of maintenance. Software engineering
involves programming languages, databases, software development tools,
system platforms, standards, design patterns, etc.

With the continuous development of computer technology, software
development has experienced the evolution process of program design
stage, software design stage, and software engineering stage.

 1. Program design stage
The program design stage appeared from 1946 to 1955. The char-

acteristics of this stage are: there is no concept of software; the pro-
gram design is mainly developed around hardware, with small scale
and simple tools, and there is no clear division of labor (developers
and users); program design pursues space saving and programming
skills; there is almost no documentation (except the program list);
and the program mainly served for scientific computing at that time.

 2. Software design stage
The software design stage appeared from 1956 to 1970. The char-

acteristics of this stage are: the hardware environment is relatively
stable, and the development organization form of “software work-
shop” appears. The product software (which can be purchased on the
shelf) was widely used, and the concept of software was gradually
established. With the development of computer technology and the
increasing popularity of computer applications, the scale of software
is becoming larger and larger, high-level programming languages are
emerging in endlessly, the application field is constantly expanding,
developers and users have a clear division of labor, and the demand
for software in the society is surging. However, it should be pointed
out that there is no major breakthrough in software development
technology, the quality of software products is not high, and the pro-
duction efficiency is low, which leads to the “software crisis”.

 3. Software engineering stage
The emergence of the “software crisis” forced the computer indus-

try to study and change the technical means and management meth-
ods of software development. Since the 1970s, software development
has entered the stage of software engineering, from which software
has entered the era of software engineering. The specific of this stage
is that the hardware has developed in four directions: giant, min-
iaturization, networking, and intelligence. Database technology has

Embedded Software Engineering and Quality Characteristics    ◾    41

been mature and widely used. The third- and fourth-generation
design languages have emerged in succession.

 4. Prospect of future software engineering
With the continuous development of computer science and soft-

ware engineering technology, software engineering itself is also
evolving and progressing. The prospects of software engineering in
the future are as follows:

• Traditional software engineering technologies, such as domain-
based architecture (DSSA) and model-driven development
(MDD), will be further valued and popularized and gradually
play a powerful role.

• With the continuous popularization of middleware technologies
such as COM, DCOM, and CORBA, distributed application soft-
ware can easily realize resource sharing among different software
technologies. Distributed software engineering technology has
made great progress and gradually become a new trend in the
software development industry.

• With the continuous development of new technologies such as
cloud computing and big data, the current computer capacity has
gradually tended to server-side and cloud side. Practical middle-
ware technology and fast computer computing processing capac-
ity are not only the only way to develop large-scale software but
also one of the main trends of new technology development.

• With the development of Internet technology, cross network plat-
forms and cross system fields are re-integrated under the unifica-
tion of standard interface protocols. In the process of new software
development, the integration of unified basic platform and proto-
col framework plays a vital role in software development.

• With the accelerating trend of globalization, the traditional soft-
ware development and management methods are no longer suit-
able. Open-software computing will become the inevitable trend
of software engineering development under the background of
accelerated globalization and cooperation.

Embedded software has also gone through the above evolution process.
With the continuous development of computer technology and software

42    ◾    Embedded Software System Testing

technology, embedded software development has become a complex sys-
tem engineering, which must comply with the requirements of system
engineering and software engineering. Embedded software engineering,
especially in aviation, aerospace, electronics, nuclear industry, transporta-
tion, energy, and other fields, has made great progress and gradually pro-
duced a series of standards and specifications to guide the development,
application, and maintenance of embedded software.

2.1.1  Embedded Software Development Model

The standard GJB2786A-2009 gives the general requirements for software
development stipulates the activities and requirements of the software
development process. The comparison between software development
process and hardware development process is shown in Figure 2.1.

The first stage of system development is the system requirements analysis
and system design stage, which mainly demonstrates the feasibility of the
overall scheme of the system according to the requirements of the client. After
the overall scheme of the system is basically determined, the functions of the
system should be decomposed to determine which functions of the system
are realized by hardware and which functions are realized by software, and
the development task books should be issued to the hardware development
department and the software development department, respectively. After
the review and approval of the development mission statement, the hardware
and software can be developed in parallel. Specific instructions are as follows:

CSCI
integration

testing

requirements

analysis

system

design
SRR

CSC

Code &

CSUTest

HWCI

Test
manufacture

SDR

SSR
PDR DDR

PDR
DDR

TRR

++

System

Evaluation

Test &

development

Functional

baseline

Assign baseline Product baseline

SRR- System requirements review

SDR- System design review

SSR- Software requirements review

PDR- Preliminary Design Review

DDR- Detailed design review

TRR- Test preparation review

CSC- Computer software components

CSU- Computer software unit

HWCI- Hardware technical status

CSCI- Computer software configuration items

+ It may be reviewed many times or combined with

detailed

design

Software

development

hardware

development

Production &

deployment

system requirements

analysis / design

preliminary

designhardware

requirements

analysis

analysis

requirements

software

software

design

configuration

testing

integration

integration

testing

hardware review

FIGURE 2.1  System development process and software development process.

Embedded Software Engineering and Quality Characteristics    ◾    43

• The uplink in Figure 2.1 is the development process of hardware: it
consists of hardware requirements analysis, preliminary design,
detailed design, manufacturing, and hardware configuration item test.

• The downlink of Figure 2.1 is the software development process: it
consists of requirements analysis, software design, coding and unit
testing, software integration and testing, software configuration item
integration and testing, etc.

According to the idea of software engineering, from the development pro-
cess of software and hardware, the difference between software develop-
ment and hardware development is that the software development process
often requires a long test stage (accounting for about 40% of its develop-
ment cycle). The reason is that software is the logical product of human
brain thinking, not a physical product. The hidden defects in software
cannot be detected directly with various instruments and equipment like
hardware. Therefore, we must eliminate the defects in the software step by
step through different testing means in each stage and in different ways
(such as static and dynamic testing and black-box and white-box testing).

When the software and hardware have completed their respective con-
figuration item tests, the software and hardware will be integrated together
for system integration and testing. After the system testing is completed, it
can enter the test and evaluation stage (generally referred to as the design
finalization stage). After the design finalization, it can enter the produc-
tion and deployment.

The above-mentioned process is the development process of the software,
which is the main component of the software lifetime. However, as a soft-
ware, the lifetime must include the use and maintenance stage after deploy-
ment, until the final abandonment after the system completes its mission.

In general, each stage of embedded software lifetime includes:

• system analysis and software definition stage;

• software requirements analysis stage;

• software design stage (including outline design and detailed design);

• software implementation stage (including coding and software unit
testing);

• software testing stage (including software integration test, configura-
tion item test and system test);

44    ◾    Embedded Software System Testing

• software acceptance and delivery stage;

• software use and maintenance stage.

2.1.2 System Analysis and Software Definition Phase

In the system analysis and software definition stage, the embedded system
is comprehensively analyzed to clarify the parts related to software develop-
ment in the embedded system. After the system assigns tasks to the computer
system, the computer system first analyzes and determines the requirements
of its superior system, then designs the system architecture, reasonably
assigns the system requirements to software, hardware, and possible manual
operations, defines each software development project, and writes the system
requirements for software into a software development task book.

The main work and fv in Table 2.1.

2.1.3 Software Requirements Analysis Phase

The task of the software requirements analysis stage is to determine all the
requirements of the developed software, such as function, performance,
interface, security, resource environment, etc., based on the completion
of the system analysis and software definition stage; plan software devel-
opment, quality assurance and configuration management; and prepare
software requirements specifications, software development plans, quality
assurance plans, configuration management plans, system testing plans,
and other important documents.

The main problem of embedded software requirement analysis is what
the system (or user) wants the software to do. Software requirements spec-
ification is the most important technical document in software develop-
ment. It is the basis of the whole software development work. The software
development plan is a comprehensive management plan that runs through
the whole software development process and is the basis of the whole proj-
ect development management.

The main work and process control in this stage are shown in Table 2.2.

2.1.4 Software Design Phase

This stage is the core of software engineering. Its main task is to establish the
overall structure of the software and the relationship between functional mod-
ules according to the software requirements specification, define the interface
of each functional module, design the global database/data structure, specify
the design limitations, and write the software design description. This stage
mainly includes two steps, namely, outline design and detailed design.

Embedded Software Engineering and Quality Characteristics    ◾    45

TA
B

LE
 2

.1

Sy
st

em
 A

na
ly

sis
 a

nd
 S

oft
w

ar
e

D
efi

ni
tio

n
St

ag
e

W
or

k

D
ev

el
op

m
en

t
En

tr
y

M
ai

n
C

on
tr

ol

St
ag

e
C

on
di

tio
ns

M
ai

n
W

or
k

M
et

ho
d

To
ol

s
St

ag
e

Pr
od

uc
ts

C
om

pl
et

io
n

Fl
ag

M
ea

ns

Sy
st

em

Th
e

sy
st

em

1.

 S
ys

te
m

 a
na

ly
sis

.
Th

e
m

et
ho

d
of

 sy
st

em
 e

ng
in

ee
rin

g

1.
 S

pe
ci

fic
at

io
n

of

1.

 C
om

pl
et

e
al

l s
ta

ge

1.

 A
na

ly
sis

an
al

ys
is

an
d

ha
s

2.

 S
ys

te
m

 d
es

ig
n.

is
us

ed
 fo

r s
ys

te
m

 a
na

ly
sis

 a
nd

sy

st
em

pr

od
uc

ts
.

2.

 R
ev

ie
w

so
ftw

ar
e

co
m

pl
et

ed

3.

 D
efi

ne
 e

ac
h

de
sig

n.
 In

 th
e

ta
sk

re

qu
ire

m
en

ts
;

2.

 Th
e

sy
st

em

3.

 S
ta

nd
ar

di
za

tio
n

de
fin

iti
on

th

e
fu

nc
tio

n
so

ftw
ar

e
de

co
m

po
sit

io
n,

 w
e

ca
n

ad
op

t t
he

2.
 S

ys
te

m
 d

es
ig

n
re

qu
ire

m
en

ts
 a

nd

st
ag

e
al

lo
ca

tio
n

of

de
ve

lo
pm

en
t

st
ru

ct
ur

ed
 id

ea
, f

ro
m

 to
p

to

de
sc

rip
tio

n;
sy

st
em

 d
es

ig
n

ha
ve

th

e
co

m
pu

te
r

pr
oj

ec
t.

bo
tto

m
, a

nd
 g

ra
du

al
ly

 re
fin

e.

3.
 Th

e
so

ftw
ar

e
pa

ss
ed

 re
le

va
nt

sy

st
em

4.

 D
et

er
m

in
e

th
e

D
ur

in
g

sy
st

em
 a

na
ly

sis
 a

nd

de
ve

lo
pm

en
t t

as
k

re
vi

ew
s a

nd
 co

m
e

cr
iti

ca
l l

ev
el

 o
f t

he

de
sig

n,
 so

m
e

gr
ap

hi
c t

oo
ls

ca
n

be

st
at

em
en

t i
s

in
to

 fo
rc

e
aft

er

so
ftw

ar
e

an
d

us
ed

 to
 c

ar
ry

 o
ut

 w
or

k,
 u

su
al

ly

in
cl

ud
ed

 in
 th

e
ap

pr
ov

al
.

w
he

th
er

 it
 n

ee
ds

 to

th
e

fo
llo

w
in

g
gr

ap
hi

c t
oo

ls.
co

nt
ro

lle
d

lib
ra

ry

3.

 Th
e

so
ftw

ar
e

be
 in

de
pe

nd
en

tly

1.

 S
ys

te
m

 fl
ow

 ch
ar

t,
sh

ow
in

g
aft

er
 re

vi
ew

, a
nd

de

ve
lo

pm
en

t t
as

k
te

st
ed

 b
y

a
th

ird

th
e

op
er

at
io

n
co

nt
ro

l a
nd

 d
at

a
th

us
 fo

rm
s t

he

st
at

em
en

t h
as

 b
ee

n
pa

rt
y.

flo
w

 o
f t

he
 sy

st
em

.
in

iti
al

 b
as

el
in

e
of

re

vi
ew

ed
 a

nd

5.

 P
re

pa
re

 th
e

so
ftw

ar
e

2.

 S
ys

te
m

 re
so

ur
ce

 d
ia

gr
am

,
so

ftw
ar

e
sig

ne
d

in
to

 e
ffe

ct
,

de
ve

lo
pm

en
t t

as
k

sh
ow

in
g

th
e

co
nfi

gu
ra

tio
n

of

co
nfi

gu
ra

tio
n

an
d

th
e

so
ftw

ar
e

st
at

em
en

t (
w

hi
ch

da

ta
 u

ni
ts

 a
nd

 p
ro

ce
ss

in
g

m
an

ag
em

en
t

fu
nc

tio
n

ba
se

lin
e

sp
ec

ifi
es

 v
ar

io
us

un

its
 su

ita
bl

e
fo

r s
ol

vi
ng

 a

- f
un

ct
io

na
l

ha
s b

ee
n

te
ch

ni
ca

l a
nd

pr

ob
le

m
 o

r a
 g

ro
up

 o
f

ba
se

lin
e.

es
ta

bl
ish

ed
.

m
an

ag
em

en
t

pr
ob

le
m

s.
re

qu
ire

m
en

ts
, a

nd

3.

 D
at

a
flo

w
 ch

ar
t,

in
di

ca
tin

g
th

e
sp

ec
ia

l a
tte

nt
io

n
da

ta
 p

at
h

to
 so

lv
e

a
pr

ob
le

m
.

sh
ou

ld
 b

e
pa

id
 to

4.
 F

un
ct

io
n

di
ag

ra
m

, w
hi

ch

sp
ec

ify
in

g
th

e
re

pr
es

en
ts

 th
e

hi
er

ar
ch

ic
al

ac

ce
pt

an
ce

re

la
tio

ns
hi

p
of

 m
od

ul
es

 o
f a

m

et
ho

d)
.

sy
st

em
 a

nd
 fu

rt
he

r d
es

cr
ib

es

6.

 R
ev

ie
w.

th
e

in
pu

t p
ro

ce
ss

in
g

ou
tp

ut

7.

 S
ig

n
th

e
so

ftw
ar

e
di

ag
ra

m
 (I

PO
) o

f m
od

ul
e

de
ve

lo
pm

en
t

in
fo

rm
at

io
n.

as
sig

nm
en

t.

5.
 S

tr
uc

tu
re

 d
ia

gr
am

 (S
C

).

46    ◾    Embedded Software System Testing

TA
B

LE
 2

.2

W
or

k
in

 S
oft

w
ar

e
Re

qu
ire

m
en

ts
 A

na
ly

sis
 S

ta
ge

D
ev

el
op

m
en

t
En

tr
y

C
om

pl
et

io
n

M
ai

n
C

on
tr

ol

St
ag

e
C

on
di

tio
ns

M
ai

n
W

or
k

M
et

ho
d

To
ol

s
St

ag
e

Pr
od

uc
ts

Fl
ag

M
ea

ns

So
ftw

ar
e

1.

 Th
e

so
ftw

ar
e

1.

 D
et

er
m

in
e

th
e

Th
e

fo
llo

w
in

g
m

et
ho

ds
 c

an
 b

e

1.
 S

oft
w

ar
e

1.
C

om
pl

et
e

al
l

1.

 A
na

ly
sis

re
qu

ire
m

en
ts

de

ve
lo

pm
en

t
so

ftw
ar

e
op

er
at

in
g

ad
op

te
d

fo
r s

oft
w

ar
e

re
qu

ire
m

en
ts

re

qu
ire

m
en

ts

ph
as

e
pr

od
uc

ts

2.

 R
ev

ie
w

an
al

ys
is

st
ag

e
as

sig
nm

en
t

en
vi

ro
nm

en
t.

an
al

ys
is:

sp
ec

ifi
ca

tio
n.

(s
oft

w
ar

e

3.
 S

pe
ci

fic
at

io
ns

w
as

 fo
rm

al
ly

2.
 D

et
er

m
in

e
th

e

1.
 U

se
 st

ru
ct

ur
ed

 m
et

ho
ds

 fo
r

2.

 S
oft

w
ar

e
re

qu
ire

m
en

ts

4.

 C
on

fig
ur

at
io

n
re

vi
ew

ed

re
qu

ire
m

en
ts

 fo
r

re
qu

ire
m

en
ts

 a
na

ly
sis

. Th
e

de
ve

lo
pm

en
t

sp
ec

ifi
ca

tio
n,

m

an
ag

em
en

t
an

d
sig

ne
d.

so
ftw

ar
e

fu
nc

tio
ns

,
lo

gi
ca

l m
od

el
 o

f t
he

 sy
st

em
 is

pl

an
, q

ua
lit

y
de

ve
lo

pm
en

t

2.
 Th

e
pe

rf
or

m
an

ce
,

de
sc

rib
ed

 b
y

da
ta

 fl
ow

 d
ia

gr
am

,
as

su
ra

nc
e

pl
an

,
pl

an
, s

ys
te

m

de
ve

lo
pm

en
t

in
te

rf
ac

es
, s

ec
ur

ity
,

th
e

co
nt

ro
l fl

ow
 o

f t
he

 sy
st

em
 is

co

nfi
gu

ra
tio

n
te

st
in

g
pl

an
).

pr
oj

ec
t t

ea
m

re

so
ur

ce
s a

nd

de
sc

rib
ed

 b
y

co
nt

ro
l fl

ow

m
an

ag
em

en
t

2.
Th

e
so

ftw
ar

e
ha

s b
ee

n
en

vi
ro

nm
en

t,
an

d
di

ag
ra

m
, t

he
 co

nt
ro

l i
s

pl
an

 (c
an

 b
e

re
qu

ire
m

en
ts

es

ta
bl

ish
ed

.
pr

ep
ar

e
so

ftw
ar

e
de

sc
rib

ed
 b

y
st

at
e

tr
an

sit
io

n
m

er
ge

d)
.

sp
ec

ifi
ca

tio
n

3.

 Th
e

re
qu

ire
m

en
ts

di

ag
ra

m
, a

nd
 th

e
da

ta
 fl

ow
 in

3.
 S

oft
w

ar
e

sy
st

em

pa
ss

ed
 th

e
fu

nc
tio

na
l

sp
ec

ifi
ca

tio
ns

.
th

e
da

ta
 fl

ow
 d

ia
gr

am
 is

te

st
in

g
pl

an
.

re
vi

ew
 a

nd

ba
se

lin
e

ha
s

3.

 I
de

nt
ify

 k
ey

de

sc
rib

ed
 b

y
da

ta
 d

ic
tio

na
ry

.
be

ca
m

e
be

en

so
ftw

ar
e

2.

 U
se

 o
bj

ec
t-

or
ie

nt
ed

 m
et

ho
d

to

eff
ec

tiv
e

up
on

es

ta
bl

ish
ed

.
co

m
po

ne
nt

s.
an

al
yz

e
re

qu
ire

m
en

ts
. E

st
ab

lis
h

ap
pr

ov
al

.

4.
 D

et
er

m
in

e
th

e
th

e
fu

nc
tio

na
l m

od
el

 o
f

3.

 S
oft

w
ar

e
de

ve
lo

pm
en

t p
la

n
so

ftw
ar

e
pr

ob
le

m
 d

om
ai

n.
 A

al

lo
ca

tio
n

an
d

co
m

pl
et

e
th

e
se

t o
f d

at
a

flo
w

 d
ia

gr
am

s a
re

ba

se
lin

e
so

ftw
ar

e
sc

al
e

us
ed

 to
 d

es
cr

ib
e

th
e

es
ta

bl
ish

m
en

t.
es

tim
at

io
n,

de

pe
nd

en
ci

es
 b

et
w

ee
n

pr
ob

le
m

re

so
ur

ce
 p

la
n,

do

m
ai

n
da

ta
 a

nd
 re

la
te

d
da

ta

sc
he

du
le

, e
tc

.
pr

oc
es

sin
g

fu
nc

tio
ns

. D
es

cr
ib

e

5.
 M

ak
e

so
ftw

ar
e

th
e

ex
te

rn
al

 in
te

rf
ac

e
of

sy

st
em

 te
st

in
g

pl
an

.
so

ftw
ar

e
co

nfi
gu

ra
tio

n
ite

m
s,

6.

 R
ev

ie
w.

an
d

de
sc

rib
e

ea
ch

 cl
as

s a
nd

ob

je
ct

 re
sp

on
sib

le
 fo

r t
he

ex

te
rn

al
 in

te
rf

ac
e.

	 	

Embedded Software Engineering and Quality Characteristics    ◾    47

 1. Outline design
In the software design stage, it is necessary to map the determined

software requirements into the corresponding software architecture,
and each component of the architecture should be a module with
clear functions.

The goal of outline design is to provide the architecture of embed-
ded software and lay the foundation for the next detailed design.

 2. Detailed design
The detailed design is to describe each module in the software

architecture, including the algorithm and detailed design and clarify
the interface information of each module on the basis of the out-
line design. At the same time, it is necessary to design the software
unit test scheme to facilitate the unit test in the subsequent software
implementation stage.

The main work and process control in this stage are shown in
Table 2.3.

2.1.5 Software Implementation Phase

In the software implementation stage, there are two tasks: coding and unit
testing.

• Use the specified programming language to code all software units,
compile and debug the compiled code until the compilation passes
without errors.

• Unit test the coded modules to verify the design and implementation
of all software units. The content includes the interface of the test
module, local data structure, important execution path, error han-
dling, boundary conditions, and so on.

The main work and process control in this stage are shown in Table 2.4.

2.1.6 Software Testing Phase

In modern software engineering theory, software testing is an important
means to ensure software quality and reliability. As an important software
system, embedded software has the characteristics of embeddedness, real-
time, special development tools, limited memory, and a wide variety of
interfaces, which determines that the testing of embedded software has its
particularity.

48    ◾    Embedded Software System Testing

TA
B

LE
 2

.3

W
or

k
in

 S
oft

w
ar

e
D

es
ig

n
St

ag
e

M
ai

n
C

on
tr

ol

D
ev

el
op

m
en

t S
ta

ge
En

tr
y

C
on

di
tio

ns
M

ai
n

W
or

k
M

et
ho

d
To

ol
s

St
ag

e
Pr

od
uc

ts
C

om
pl

et
io

n
Fl

ag
M

ea
ns

So
ftw

ar
e

O
ut

lin
e

 1
. Th

e
so

ftw
ar

e
 1

. E
st

ab
lis

h
so

ftw
ar

e
Th

e
fo

llo
w

in
g

m
et

ho
ds

 1

. S
oft

w
ar

e
 1

. C
om

pl
et

e
al

l
 1

. R
ev

ie
w

de
sig

n
de

sig
n

re
qu

ire
m

en
ts

ar

ch
ite

ct
ur

e.
Re

al
iz

e
th

e
ca

n
be

 a
do

pt
ed

:
ou

tli
ne

ph

as
e

 2
. S

pe
ci

fic
at

io
ns

st
ag

e
sp

ec
ifi

ca
tio

n
tr

an
sf

or
m

at
io

n
fr

om
 lo

gi
ca

l
 1

. F
un

ct
io

n
de

sig
n

pr
od

uc
ts

 3

. C
on

fig
ur

at
io

n
ha

s b
ee

n
m

od
el

 to
 p

hy
sic

al
 m

od
el

,
de

co
m

po
sit

io
n

de
sc

rip
tio

n
(s

oft
w

ar
e

m
an

ag
em

en
t

fo
rm

al
ly

al

lo
ca

te
 v

ar
io

us
 fu

nc
tio

ns
 to

m

et
ho

d
(in

cl
ud

in
g

re
qu

ire
m

en
ts

re

vi
ew

ed
 a

nd

va
rio

us
 so

ftw
ar

e
co

m
po

ne
nt

s
de

co
m

po
se

s t
he

ex

te
rn

al

sp
ec

ifi
ca

tio
n,

sig

ne
d.

(fu
nc

tio
na

l m
od

ul
es

),
an

d
so

ftw
ar

e
in

to

in
te

rf
ac

e
de

ve
lo

pm
en

t
 2

. Th
e

so
ftw

ar
e

de
fin

e
th

e
in

pu
t a

nd
 o

ut
pu

t
hi

er
ar

ch
ic

al

de
sig

n)
.

pl
an

, s
ys

te
m

de

ve
lo

pm
en

t
of

 v
ar

io
us

 so
ftw

ar
e

st
ru

ct
ur

e.
A

 2

. S
oft

w
ar

e
te

st
in

g
pl

an
).

pl
an

 is

co
m

po
ne

nt
s.

to
p-

do
w

n
ap

pr
oa

ch

in
te

gr
at

io
n

 2
. Th

e
so

ftw
ar

e
ap

pr
ov

ed
 a

nd

 2
. C

la
rif

y
th

e
de

sig
n

cr
ite

ria

m
us

t b
e

ad
op

te
d,

te

st
 p

la
n.

re
qu

ire
m

en
ts

ta

ke
s e

ffe
ct

.
an

d
gu

id
e

th
e

so
ftw

ar
e

st
ar

tin
g

fr
om

 th
e

sp
ec

ifi
ca

tio
n

 3
. Th

e
di

sp
at

ch

de
sig

n.
to

p-
le

ve
l s

oft
w

ar
e

is
re

vi
ew

ed

ba
se

lin
e

ha
s

 3
. C

om
pl

et
e

th
e

re
al

iz
at

io
n

of

co
m

po
ne

nt
s,

to

an
d

ap
pr

ov
ed

be

en

no
n-

fu
nc

tio
na

l r
eq

ui
re

m
en

ts
,

de
co

m
po

se
 th

e
to

 ta
ke

 e
ffe

ct
.

es
ta

bl
ish

ed
.

in
cl

ud
in

g
pe

rf
or

m
an

ce
,

so
ftw

ar
e

la
ye

r b
y

 3
. S

oft
w

ar
e

in
te

rf
ac

e,
op

er
at

io
n,

la

ye
r i

nt
o

a
al

lo
ca

tio
n

re
so

ur
ce

s,
ve

rifi
ca

tio
n,

hi

er
ar

ch
ic

al

ba
se

lin
e

se
cu

rit
y,

po
rt

ab
ili

ty
,

st
ru

ct
ur

e
sy

st
em

es

ta
bl

ish
m

en
t.

re
lia

bi
lit

y,
m

ai
nt

ai
na

bi
lit

y,
co

m
po

se
d

of

an
d

ot
he

r r
eq

ui
re

m
en

ts
.

se
ve

ra
l s

oft
w

ar
e

 4
. D

et
er

m
in

e
th

e
so

ftw
ar

e
co

m
po

ne
nt

s.
in

te
gr

at
io

n
te

st
 p

la
n.

 2
. D

at
a

flo
w

 o
rie

nt
ed

 5

. P
re

pa
re

 o
ut

lin
e

de
sig

n
st

ru
ct

ur
ed

 d
es

ig
n

de
sc

rip
tio

n
an

d
re

vi
ew

.
m

et
ho

d,
 e

tc
.

(C
on

tin
ue

d)

Embedded Software Engineering and Quality Characteristics    ◾    49

TA
B

LE
 2

.3
 (C

on
tin

ue
d)

 
W

or
k

in
 S

oft
w

ar
e

D
es

ig
n

St
ag

e

M
ai

n
C

on
tr

ol

D
ev

el
op

m
en

t S
ta

ge
En

tr
y

C
on

di
tio

ns
M

ai
n

W
or

k
M

et
ho

d
To

ol
s

St
ag

e
Pr

od
uc

ts
C

om
pl

et
io

n
Fl

ag
M

ea
ns

D
et

ai
le

d
Th

e
so

ftw
ar

e
 1

. R
efi

ne
 th

e
so

ftw
ar

e
C

om
m

on
ly

 u
se

d
to

ol
s:

D
et

ai
le

d
 1

. C
om

pl
et

e
th

e
de

sig
n

ou
tli

ne
 d

es
ig

n
co

m
po

ne
nt

s s
te

p
by

 st
ep

 1

. G
ra

ph
ic

 to
ol

s:
so

ftw
ar

e
de

ta
ile

d
pa

ss
ed

 th
e

un
til

 se
ve

ra
l s

oft
w

ar
e

un
its

lo

gi
ca

l c
on

st
ru

ct
io

n
de

sig
n

de
sig

n
re

vi
ew

 a
nd

 w
as

(p

ro
gr

am
m

ab
le

 m
od

ul
es

) a
re

is

re
pr

es
en

te
d

by

de
sc

rip
tio

n.
de

sc
rip

tio
n

of

in
cl

ud
ed

 in
 th

e
fo

rm
ed

.
sp

ec
ifi

c g
ra

ph
ic

s.
th

e
so

ftw
ar

e
co

nt
ro

lle
d

 2
. C

om
pl

et
e

th
e

so
ftw

ar
e

un
it

 2
. L

ist
 to

ol
: u

se
 ta

bl
es

an

d
pa

ss
 th

e
lib

ra
ry

.
pr

oc
es

s d
es

cr
ip

tio
n,

 a
nd

to

 re
pr

es
en

t t
he

re

vi
ew

.
de

te
rm

in
e

th
e

m
od

ul
e

de
ta

ils
 o

f t
he

 2

. Th
e

de
ta

ile
d

al
go

rit
hm

 a
nd

 d
at

a
st

ru
ct

ur
e.

pr
oc

es
s.

de
sig

n
 3

. D
et

er
m

in
e

th
e

in
te

rf
ac

e
 3

. L
an

gu
ag

e
to

ol
s:

us
e

de
sc

rip
tio

n
of

in

fo
rm

at
io

n
be

tw
ee

n
un

its
.

cl
as

s l
an

gu
ag

e
th

e
so

ftw
ar

e
is

 4
. P

re
pa

re
 d

et
ai

le
d

de
sig

n
(p

se
ud

o
co

de
) t

o
in

cl
ud

ed
 in

de

sc
rip

tio
n

an
d

re
vi

ew
.

re
pr

es
en

t p
ro

ce
ss

th

e
co

nt
ro

lle

 5
. D

et
er

m
in

e
th

e
so

ftw
ar

e
un

it
de

ta
ils

.
d

lib
ra

ry
.

te
st

 p
la

n.

50    ◾    Embedded Software System Testing

On the basis of unit testing completed in the implementation stage of
embedded software, generally, the subsequent software testing should
include integration testing, configuration item testing and system testing.
The brief description is as follows:

 1. Integration testing
There are generally two integration methods for embedded soft-

ware integration testing: one is integration testing on the host com-
puter, and the other is integration testing on the target computer.

 2. Configuration item testing
Software configuration item test is to comprehensively verify all

functions, performance, interfaces, security, recoverability, strength,
allowance, and other requirements defined in the software require-
ments specification on the basis of integration testing, and test whether
the whole software configuration item meets the requirements.

 3. System testing
Embedded systems often contain multiple software configuration

items. In this case, whether the embedded software can correctly con-
nect with other software and hardware in the system, and whether it
has correctly completed the functions and performance assigned by
the superior system, must be confirmed by system testing.

The purpose of embedded software system testing is to verify
whether the software can be correctly connected with the system in
the real system working environment or simulation testing environ-
ment, and to confirm whether the software is consistent with the
software function, performance and interface requirements pro-
posed in the software development specification.

For real-time embedded software, system testing is one of the most
important testing methods because all the above tests cannot test the
timing errors and software and hardware interface errors hidden in
real-time software. Therefore, the software for system testing must
run on the target machine and adopt the real i/o interface.

The main work and process control in this stage are shown in
Table 2.5.

2.1.7 Software Acceptance and Delivery

After the embedded software products are developed and tested, the soft-
ware should be accepted and delivered. Software acceptance is an activity

Embedded Software Engineering and Quality Characteristics    ◾    51

TA
B

LE
 2

.4

W
or

k
in

 S
oft

w
ar

e
Im

pl
em

en
ta

tio
n

St
ag

e

D
ev

el
op

m
en

t
En

tr
y

M
ai

n
C

on
tr

ol

St
ag

e
C

on
di

tio
ns

M
ai

n
W

or
k

M
et

ho
d

To
ol

s
St

ag
e

Pr
od

uc
ts

C
om

pl
et

io
n

Fl
ag

M
ea

ns

So
ftw

ar
e

1.

 Th
e

so
ftw

ar
e

1.

 P
ro

gr
am

 co
di

ng
,

Th
e

fo
llo

w
in

g
m

et
ho

ds
 c

an
 b

e

1.
 S

oft
w

ar
e

1.

 S
oft

w
ar

e
un

its

1.

 A
na

ly
sis

im
pl

em
en

ta
tio

n
de

ta
ile

d
in

cl
ud

in
g

co
m

m
en

ts

ad
op

te
d

fo
r s

oft
w

ar
e

so
ur

ce
 co

de
.

ar
e

co
m

pi
le

d
or

2.
 R

ev
ie

w
st

ag
e

de
sig

n
re

vi
ew

on

 th
e

so
ur

ce
 co

de
.

re
qu

ire
m

en
ts

 a
na

ly
sis

:

2.
 T

es
t d

at
a,

as

se
m

bl
ed

3.
 S

pe
ci

fic
at

io
ns

is
pa

ss
ed

 a
nd

2.
 C

om
pi

le
 a

nd
 d

eb
ug

1.
 S

tr
uc

tu
re

d
pr

og
ra

m
m

in
g

in
cl

ud
in

g
te

st

w
ith

ou
t e

rr
or

s.

4.
 C

on
fig

ur
at

io
n

sig
ne

d.
to

 e
ns

ur
e

th
at

 th
e

m
et

ho
d,

 o
bj

ec
t-

or
ie

nt
ed

ca

se
s,

te
st

2.
 C

om
pl

et
e

co
de

m

an
ag

em
en

t

2.
 Th

e
de

ta
ile

d
so

ftw
ar

e
un

it
co

de

pr
og

ra
m

m
in

g
m

et
ho

d,
 e

tc
.

da
ta

, t
es

t
st

at
ic

 a
na

ly
sis

de

sig
n

pa
ss

es
 co

m
pi

la
tio

n

2.
 S

ta
tic

 a
na

ly
sis

 te
ch

no
lo

gy
,

re
su

lts
 /

an
d

co
de

 re
vi

ew
.

de
sc

rip
tio

n
of

or

 a
ss

em
bl

y
w

ith
ou

t
in

cl
ud

in
g

co
nt

ro
l fl

ow

re
co

rd
s,

et
c.

3.

 C
om

pl
et

e
th

e
th

e
so

ftw
ar

e
er

ro
rs

.
an

al
ys

is,
 d

at
a

flo
w

 a
na

ly
sis

,

3.
 U

ni
t t

es
t

un
it

te
st

.
ha

s b
ee

n

3.
 S

ta
tic

 a
na

ly
sis

, u
sin

g
in

te
rf

ac
e

an
al

ys
is,

A

ID
S,

 d
riv

er
s,

4.

 Th
ro

ug
h

th
e

in
cl

ud
ed

 in

st
at

ic
 a

na
ly

sis
 to

ol
s.

ex
pr

es
sio

n
an

al
ys

is.
pi

le
 m

od
ul

es
,

so
ftw

ar
e

th
e

co
nt

ro
lle

d

4.
 C

od
e

re
vi

ew
: r

ea
d

3.

 C
od

e
re

vi
ew

: a
cc

or
di

ng
 to

et

c.
sh

ou
ld

im

pl
em

en
ta

tio
n

lib
ra

ry
.

an
d

re
vi

ew
 th

e
th

e
co

de
 re

vi
ew

 sh
ee

t,
al

so
 b

e
st

ag
e

re
vi

ew
.

3.

 S
oft

w
ar

e
un

it
co

m
pi

le
d

so
ur

ce

re
vi

ew
 th

e
re

vi
ew

ed

ca
re

fu
lly

5.
 C

on
tr

ol
le

d
(m

od
ul

e)

co
de

 it
em

 b
y

ite
m

pr

og
ra

m
 co

de
 o

ne
 b

y
on

e
st

or
ed

 fo
r

lib
ra

rie
s o

f a
ll

do
cu

m
en

ts

ac
co

rd
in

g
to

 th
e

ac
co

rd
in

g
to

 th
e

de
ta

ile
d

re
vi

ew
 a

nd

so
ftw

ar
e

un
its

.
ar

e
av

ai
la

bl
e.

co
de

 re
vi

ew
 li

st
.

so
ftw

ar
e

de
sig

n
re

gr
es

sio
n

5.

 U
ni

t t
es

t,
ac

co
rd

in
g

sp
ec

ifi
ca

tio
n

do
cu

m
en

t s
o

te
st

in
g.

to

 th
e

pl
an

, d
es

ig
n

as
 to

 e
ns

ur
e

th
e

So
ftw

ar
e

an
d

co
m

pi
le

 th
e

pi
le

co

ns
ist

en
cy

 b
et

w
ee

n
th

e
re

qu
ire

m
en

ts

m
od

ul
e

an
d

dr
iv

e
co

de
 a

nd
 th

e
de

sig
n

an
d

sp
ec

ifi
ca

tio
n.

m
od

ul
e

re
qu

ire
d

fo
r

en
su

re
 th

e
co

rr
ec

tn
es

s o
f

un
it

te
st

, a
nd

th

e
co

de
.

pr
ep

ar
e

th
e

4.

 U
ni

t t
es

tin
g,

 st
at

ic
 a

nd

ne
ce

ss
ar

y
te

st
 d

at
a.

dy
na

m
ic

 te
st

in
g

of

6.

 R
ev

ie
w,

 re
vi

ew
 th

e
so

ftw
ar

e
un

its
, s

ta
tis

tic
al

so

ur
ce

 co
de

 a
nd

 u
ni

t
co

ve
ra

ge
.

te
st

 w
or

k.

52    ◾    Embedded Software System Testing

TA
B

LE
 2

.5

So
ftw

ar
e

Te
st

in
g

Ph
as

e
W

or
k

D
ev

el
op

m
en

t S
ta

ge
En

tr
y

C
on

di
tio

ns
M

ai
n

W
or

k
M

et
ho

d
an

d
To

ol
s

St
ag

e
Pr

od
uc

ts
C

om
pl

et
io

n
Fl

ag
M

ai
n

C
on

tr
ol

 M
ea

ns

So
ftw

ar
e

In
te

gr
at

io
n

1.

 Th
e

in
te

gr
at

ed

1.

 I
m

pl
em

en
t t

he

Th
er

e
ar

e
tw

o
in

te
gr

at
io

n

1.
 S

oft
w

ar
e

1.

 C
om

pl
et

e
al

l

1.
 R

ev
ie

w
te

st
in

g
te

st
in

g
so

ftw
ar

e
un

it
ca

n
so

ftw
ar

e
te

st
in

g
st

ra
te

gi
es

:
in

te
gr

at
io

n
te

st

te
st

s s
pe

ci
fie

d
in

2.
 S

pe
ci

fic
at

io
n

ph
as

e
be

 co
m

pi
le

d
or

in

te
gr

at
io

n
te

st

1.

 I
n

th
e

no
n-

de
sc

rip
tio

n.
th

e
so

ftw
ar

e

3.
 T

es
tin

g
te

ch
ni

qu
es

as

se
m

bl
ed

pl

an
.

in
cr

em
en

ta
l m

od
e,

2.

 S
oft

w
ar

e
in

te
gr

at
io

n
te

st

an
d

to
ol

s
w

ith
ou

t e
rr

or
s.

2.

 V
er

ify
 th

e
ea

ch
 so

ftw
ar

e
un

it
is

in
te

gr
at

io
n

te
st

in

st
ru

ct
io

ns
.

4.

 C
on

fig
ur

at
io

n

2.
 Th

e
in

te
gr

at
ed

co

rr
ec

tn
es

s o
f t

he

te
st

ed
 fi

rs
t,

an
d

th
en

re

po
rt

, i
nc

lu
di

ng

2.

 A
ll

so
ftw

ar
e

m
an

ag
em

en
t

so
ftw

ar
e

un
it

co
nt

ro
l p

at
h

of
 th

e
as

se
m

bl
ed

 at
 o

ne
 ti

m
e,

al
l t

es
t r

ec
or

ds
 a

nd

pr
ob

le
m

s w
er

e
pa

ss
es

 th
e

un
it

so
ftw

ar
e,

th
e

an
d

th
en

 th
e

w
ho

le

re
su

lts
.

ha
nd

le
d

as

te
st

.
in

te
gr

ity
 o

f t
he

pr

og
ra

m
 is

 te
st

ed
. Th

is

3.
 A

ll
so

ftw
ar

e
re

qu
ire

d.

3.
 I

nt
eg

ra
tio

n
te

st

in
te

rn
al

 d
at

a
of

 th
e

m
et

ho
d

is
fa

st
 a

nd

pr
ob

le
m

 re
po

rt
s

3.

 Th
e

so
ftw

ar
e

en
vi

ro
nm

en
t a

nd

so
ftw

ar
e

an
d

th
e

ta
ke

s l
es

s m
ac

hi
ne

an

d
so

ftw
ar

e
do

cu
m

en
ts

 th
at

to

ol
s a

re

ex
te

rn
al

 in
te

rf
ac

e,
tim

e,
w

hi
ch

 is

m
od

ifi
ca

tio
n

ha
ve

 p
as

se
d

th
e

av
ai

la
bl

e.
fu

nc
tio

n,

co
nd

uc
iv

e
to

 p
ar

al
le

l
re

po
rt

s.
re

gr
es

sio
n

te
st

4.
 Th

e
in

te
gr

at
ed

pe

rf
or

m
an

ce
,

de
ve

lo
pm

en
t,

bu
t i

t i
s

4.

 A
ll

m
od

ifi
ed

ar

e
in

cl
ud

ed
 in

so

ftw
ar

e
un

it
ha

s
ac

cu
ra

cy
, e

rr
or

ea

sy
 to

 c
au

se

so
ftw

ar
e

so
ur

ce

th
e

co
nt

ro
lle

d
be

en
 p

la
ce

d
id

en
tifi

ca
tio

n
an

d
co

nf
us

io
n.

co
de

s c
on

sis
te

nt

lib
ra

ry
.

un
de

r
re

co
ve

ry
 o

f

2.
 I

nc
re

m
en

ta
l m

et
ho

d,

w
ith

 th
e

so
ftw

ar
e

4.

 P
as

s t
he

 so
ftw

ar
e

co
nfi

gu
ra

tio
n

so
ftw

ar
e

gr
ad

ua
lly

 co
m

bi
ne

 th
e

m
od

ifi
ca

tio
n

in
te

gr
at

io
n

te
st

m

an
ag

em
en

t.
co

m
po

ne
nt

s.
ne

xt
 so

ftw
ar

e
un

it
or

re

po
rt

.
ph

as
e

re
vi

ew
.

3.

 P
re

pa
re

 so
ftw

ar
e

co
m

po
ne

nt
 to

 b
e

in
te

gr
at

io
n

te
st

as

se
m

bl
ed

 w
ith

 th
e

re
po

rt
.

te
st

ed
 so

ftw
ar

e

4.
 R

ev
ie

w.
co

m
po

ne
nt

s.
(C

on
tin

ue
d)

Embedded Software Engineering and Quality Characteristics    ◾    53

TA
B

LE
 2

.5
 (C

on
tin

ue
d)

 
So

ftw
ar

e
Te

st
in

g
Ph

as
e

W
or

k

D
ev

el
op

m
en

t S
ta

ge
En

tr
y

C
on

di
tio

ns
M

ai
n

W
or

k
M

et
ho

d
an

d
To

ol
s

St
ag

e
Pr

od
uc

ts
C

om
pl

et
io

n
Fl

ag
M

ai
n

C
on

tr
ol

 M
ea

ns

C
on

fig
ur

at
io

n

1.
 C

om
pl

et
e

th
e

1.

 E
xe

cu
te

 th
e

1.

 T
es

t c
as

e
de

sig
n

ba
se

d

1.
 S

oft
w

ar
e

1.

 C
om

pl
et

e
al

l

1.
 R

ev
ie

w
ite

m
 te

st
in

g
so

ftw
ar

e
so

ftw
ar

e
on

 re
qu

ire
m

en
ts

.
co

nfi
gu

ra
tio

n
ite

m

te
st

s s
pe

ci
fie

d
in

2.
 S

pe
ci

fic
at

io
n

in
te

gr
at

io
n

te
st

co

nfi
gu

ra
tio

n
ite

m

D
es

ig
n

te
st

 c
as

es

te
st

 d
es

cr
ip

tio
n.

th
e

so
ftw

ar
e

3.

 T
es

tin
g

te
ch

ni
qu

es

an
d

pa
ss

 th
e

te
st

 p
la

n.
ac

co
rd

in
g

to
 th

e

2.
 S

oft
w

ar
e

co
nfi

gu
ra

tio
n

an
d

to
ol

s
re

vi
ew

.

2.
 V

er
ify

 a
ll

so
ftw

ar
e

re
qu

ire
m

en
ts

co

nfi
gu

ra
tio

n
ite

m

ite
m

 te
st

4.
 C

on
fig

ur
at

io
n

2.

 Th
e

fu
nc

tio
ns

,
sp

ec
ifi

ca
tio

n,

te
st

 re
po

rt
,

in
st

ru
ct

io
ns

.
m

an
ag

em
en

t
co

nfi
gu

ra
tio

n
pe

rf
or

m
an

ce
,

in
cl

ud
in

g
no

rm
al

in

cl
ud

in
g

al
l t

es
t

2.

 A
ll

so
ftw

ar
e

ite
m

 te
st

in

te
rf

ac
es

, s
af

et
y,

ra
ng

e
te

st
 c

as
es

 a
nd

re

co
rd

s a
nd

pr

ob
le

m
s w

er
e

en
vi

ro
nm

en
t a

nd

re
co

ve
ra

bi
lit

y,
ab

no
rm

al
 ra

ng
e

te
st

re

su
lts

.
ha

nd
le

d
as

to

ol
s a

re

st
re

ng
th

,
ca

se
s.

3.

 A
ll

so
ftw

ar
e

re
qu

ire
d.

av
ai

la
bl

e.
al

lo
w

an
ce

, a
nd

2.
 F

or
 so

ftw
ar

e w
ith

 h
ig

h
pr

ob
le

m
 re

po
rt

s

3.
 Th

e
so

ftw
ar

e

3.
 S

oft
w

ar
e

ot
he

r r
eq

ui
re

m
en

ts

re
lia

bi
lit

y
an

d
sa

fe
ty

an

d
so

ftw
ar

e
do

cu
m

en
ts

 th
at

co

nfi
gu

ra
tio

n
de

fin
ed

 in
 th

e
re

qu
ire

m
en

ts
, t

o
m

od
ifi

ca
tio

n
ha

ve
 p

as
se

d
th

e
ite

m
s h

av
e

be
en

so

ftw
ar

e
fu

rt
he

r e
ns

ur
e t

he
 h

ig
h

re
po

rt
s.

re
gr

es
sio

n
te

st

pl
ac

ed
 u

nd
er

re

qu
ire

m
en

ts

qu
al

ity
 o

f t
he

 so
ftw

ar
e,

4.

 A
ll

m
od

ifi
ed

ar

e
in

cl
ud

ed
 in

co

nfi
gu

ra
tio

n
sp

ec
ifi

ca
tio

n,
 a

nd

aft
er

 th
e s

oft
w

ar
e

so
ftw

ar
e

so
ur

ce

th
e

co
nt

ro
lle

d
m

an
ag

em
en

t.
te

st
 w

he
th

er
 th

e
de

ve
lo

pe
r h

as

co
de

s c
on

sis
te

nt

lib
ra

ry
.

en
tir

e
so

ftw
ar

e
co

m
pl

et
ed

 al
l s

oft
w

ar
e

w
ith

 th
e

so
ftw

ar
e

4.

 P
as

s t
he

 so
ftw

ar
e

co
nfi

gu
ra

tio
n

ite
m

te

st
in

g,
 it

 is
 al

so

m
od

ifi
ca

tio
n

co

nfi
gu

ra
tio

n
m

ee
ts

 th
e

ne
ce

ss
ar

y
to

 au
th

or
iz

e
re

po
rt

.
ite

m
 te

st
 p

ha
se

re

qu
ire

m
en

ts
.

an
 au

th
or

ita
tiv

e
re

vi
ew

.

3.
 P

re
pa

re
 so

ftw
ar

e
pr

of
es

sio
na

l t
ec

hn
ic

al

co
nfi

gu
ra

tio
n

ite
m

in

st
itu

tio
n

th
at

 is

te
st

 re
po

rt
.

re
la

tiv
ely

 in
de

pe
nd

en
t

4.

 R
ev

ie
w.

of
 th

e s
oft

w
ar

e
de

ve
lo

pm
en

t c
lie

nt
 an

d
th

e d
ev

el
op

er
 to

co

nd
uc

t i
nd

ep
en

de
nt

th

ird
-p

ar
ty

 so
ftw

ar
e

co
nfi

gu
ra

tio
n

ite
m

te

st
in

g
on

 th
e

so
ftw

ar
e.

(C
on

tin
ue

d)

54    ◾    Embedded Software System Testing

TA
B

LE
 2

.5
 (C

on
tin

ue
d)

 
So

ftw
ar

e
Te

st
in

g
Ph

as
e

W
or

k

D
ev

el
op

m
en

t S
ta

ge
En

tr
y

C
on

di
tio

ns
M

ai
n

W
or

k
M

et
ho

d
an

d
To

ol
s

St
ag

e
Pr

od
uc

ts
C

om
pl

et
io

n
Fl

ag
M

ai
n

C
on

tr
ol

 M
ea

ns

Sy
st

em
 te

st
in

g

1.
 C

om
pl

et
e

th
e

1.

 E
st

ab
lis

h
a

re
al

1.
 Th

e
fo

cu
s o

f s
ys

te
m

1.
 S

oft
w

ar
e

sy
st

em

1.

 C
om

pl
et

e
al

l

1.
 R

ev
ie

w
so

ftw
ar

e
Sy

st
em

 te
st

in
g

te
st

in
g

is
w

he
th

er
 th

e
te

st
in

g
te

st
s s

pe
ci

fie
d

in

2.

 S
pe

ci
fic

at
io

n
co

nfi
gu

ra
tio

n
en

vi
ro

nm
en

t o
r

tim
in

g
of

 e
m

be
dd

ed

in
st

ru
ct

io
ns

.
th

e
so

ftw
ar

e

3.
 T

es
tin

g
te

ch
ni

qu
es

ite

m
 te

st
 a

nd

sim
ul

at
io

n
te

st

sy
st

em
 is

 co
rr

ec
t a

nd

2.

 S
oft

w
ar

e
sy

st
em

sy

st
em

 te
st

in
g

an
d

to
ol

s
pa

ss
 th

e
re

vi
ew

.
en

vi
ro

nm
en

t,
an

d
w

he
th

er
 th

e
in

te
rf

ac
e

te
st

in
g

re
po

rt
,

in
st

ru
ct

io
ns

.

4.
 C

on
fig

ur
at

io
n

2.

 S
ys

te
m

 te
st

in
g

th
e

ha
rd

w
ar

e
w

ith
 re

la
te

d
sy

st
em

s i
s

in
cl

ud
in

g
al

l t
es

t

2.
 A

ll
so

ftw
ar

e
m

an
ag

em
en

t
en

vi
ro

nm
en

t a
nd

en

vi
ro

nm
en

t a
nd

co

or
di

na
te

d.
re

co
rd

s a
nd

pr

ob
le

m
s w

er
e

to
ol

s a
re

in

te
rf

ac
e

of

2.

 Th
e

bo
un

da
rie

s o
f a

ll
re

su
lts

.
ha

nd
le

d
as

av

ai
la

bl
e.

so
ftw

ar
e

op
er

at
io

n
in

pu
t /

 o
ut

pu
t

3.

 A
ll

so
ftw

ar
e

re
qu

ire
d.

3.

 A
ll

so
ftw

ar
e

sh
ou

ld
 a

do
pt

 re
al

in

fo
rm

at
io

n
sh

ou
ld

 b
e

pr
ob

le
m

 re
po

rt
s

3.

 Th
e

so
ftw

ar
e

co
nfi

gu
ra

tio
n

co
m

po
ne

nt
s.

ex
am

in
ed

.
an

d
so

ftw
ar

e
do

cu
m

en
ts

 th
at

ite

m
s h

av
e

be
en

2.
 D

es
ig

n
an

d

3.
 C

om
bi

ne
 th

e
so

ftw
ar

e
m

od
ifi

ca
tio

n
ha

ve
 p

as
se

d
th

e
pl

ac
ed

 u
nd

er

im
pl

em
en

t t
es

t
w

ith
 it

s e
m

be
dd

ed

re
po

rt
s.

re
gr

es
sio

n
te

st

co
nfi

gu
ra

tio
n

ca
se

s a
cc

or
di

ng
 to

sy

st
em

 fo
r s

tr
en

gt
h

4.

 A
ll

m
od

ifi
ed

ar

e
in

cl
ud

ed
 in

m

an
ag

em
en

t.
th

e
re

qu
ire

m
en

ts

te
st

.
so

ftw
ar

e
so

ur
ce

th

e
co

nt
ro

lle
d

of
 sy

st
em

 te
st

in
g.

4.

 Th
e

sy
st

em
 sh

al
l b

e
co

de
s c

on
sis

te
nt

lib

ra
ry

.

3.
 A

na
ly

ze
 te

st
 d

at
a,

te

st
ed

 in
 cl

os
ed

 lo
op

w

ith
 th

e
so

ftw
ar

e

4.
 P

as
s t

he
 so

ftw
ar

e
co

m
pl

et
e

pr
ob

le
m

an

d
no

n-
in

tr
us

iv
e

re
al

m

od
ifi

ca
tio

n

sy
st

em
 te

st
in

g
an

al
ys

is
an

d
tim

e.
re

po
rt

.
ph

as
e

re

po
rt

.
re

vi
ew

.

4.
 C

ar
ry

 o
ut

re

gr
es

sio
n

te
st

.

5.
 P

re
pa

re
 S

ys
te

m

te
st

in
g

re
po

rt
.

6.

 R
ev

ie
w,

 re
vi

ew
 th

e
sy

st
em

 te
st

in
g

w

or
k.

Embedded Software Engineering and Quality Characteristics    ◾    55

that the development task entrusting party authorizes its representative to
carry out. Through this activity, the task entrusting party verifies that the
software meets the requirements according to the contract or task state-
ment, and accepts the ownership or use right of some or all software prod-
ucts according to the contract or task statement.

Delivery is the process that the developer of the development task hands
over the software products that have passed the acceptance to the entrust-
ing party. Each software product should be accepted and delivered after all
development activities are completed.

 1. Premise of software acceptance
The software project submitted for acceptance must meet the fol-

lowing conditions:

 1. The software passes the software configuration item test (for
embedded software, it should pass the software system testing);

 2. Complete various documents specified in the assignment (con-
tract, the same below);

 3. Software products have been placed under configuration
management;

 4. Meet other acceptance conditions specified in the assignment.

 2. Software acceptance basis
The basis for software acceptance is the standards and specifica-

tions specified in the software development assignment, the relevant
technical documents referenced in the assignment or the appendix,
the assignment, or the model system.

 3. Software acceptance process
The software acceptance and delivery must be carried out accord-

ing to the regulations, and the formal procedures must be performed
according to the following work steps:

 1. Apply for software acceptance;

 2. Formulate software acceptance plan;

 3. Establish a software Acceptance Committee;

 4. Conduct software acceptance test;

 5. Conduct software acceptance review;

56    ◾    Embedded Software System Testing

 6. Form software acceptance report;

 7. Handover of software products.

 4. Software product delivery
When necessary, the developer shall further supplement and

improve the software products according to the opinions of the
Acceptance Committee. After these follow-up works are completed
and approved by the Acceptance Committee or its designated per-
sonnel, the software products shall be delivered.

Under the approval and supervision of the Acceptance Committee,
the product items in the software product handover project list are
verified item by item and handed over to the entrusting party. After
the handover, both the entrusting party and the developer shall sign
and seal on the software product handover project list as the receiv-
ing unit and the handover unit respectively, indicating that the soft-
ware product delivery is completed.

 5. Software continuous assurance
After the delivery of the software, the continuous guarantee

work shall be jointly undertaken by the software developer and the
entrusting party. The responsibilities of both parties are as follows:

 1. Responsibilities of the developer

 1. The installation and inspection of the software shall be com-
pleted under the guaranteed environment specified in the
assignment.

 2. The code provided shall support the regeneration and trans-
plantation under the guaranteed environment specified in
the assignment.

 3. Provide the client with training and other services required
to ensure the normal operation of the software in accordance
with the provisions of the assignment;

 4. It should help users solve technical problems encountered
in the use of the software according to the provisions of the
assignment.

 2. Responsibilities of the entrusting party (or end user)

 1. Establish an appropriate use organization, allocate appropriate
personnel, and clarify the responsibilities of various personnel;

Embedded Software Engineering and Quality Characteristics    ◾    57

 2. Organize necessary training to equip relevant personnel with
necessary knowledge and skills;

 3. Provide the necessary environment and resources for the
normal operation and maintenance of the software;

 4. Establish reasonable and effective software use procedures
and management methods;

 5. Collect and record relevant data in the use of software, espe-
cially failure data.

2.1.8 Software Use and Maintenance Phase

Software maintenance refers to the modification activities carried out after
the delivery of software products to correct faults, improve performance
and other attributes, or adapt the products to the changed environment.
Software maintenance is generally divided into three types: perfect main-
tenance, adaptive maintenance, and corrective maintenance. Perfectness
maintenance is to modify and expand to expand functions and improve
performance to meet the changing needs of users. Adaptive maintenance
is a modification made to adapt to changes in the software operating envi-
ronment. For example, modifications required due to changes in hardware
configuration and system software. Corrective maintenance is to maintain
the operation of the system and correct the errors generated in the devel-
opment process but not found during testing and acceptance.

In addition, someone also proposed the fourth kind of maintenance,
namely preventive maintenance, which is a change to the software to fur-
ther improve the maintainability and reliability of the software or to pro-
vide a better foundation.

The maintenance of software is not exactly the same as that of hard-
ware. The maintenance of software means modification. It does not have
the maintenance work of replacing spare parts like hardware.

 1. Software maintenance work content:

 1. Corrective maintenance, including correcting design errors, pro-
gram errors, data errors and document errors.

 2. Adaptive maintenance, including adapting to changes in rules
or laws that affect the system; changes in hardware configura-
tion, such as changes in model, terminal, external equipment,
etc.; changes in data format or file structure; and the change of

58    ◾    Embedded Software System Testing

software support environment, such as the change of operating
system, compiler, or utility program.

 3. Integrity maintenance, including expansion and enhancement
functions such as expanding the scope of problem solving and
algorithm optimization; improve performance, such as improv-
ing operation speed and saving storage space; and facilitate main-
tenance such as adding some notes to improve readability.

 2. Software maintenance organization:
When carrying out software maintenance, a software maintenance

organization must be established. The organization shall include:

 1. Software maintenance management organization;

 2. Software maintenance supervisor;

 3. Software maintenance administrator;

 4. Software maintenance team.
The main tasks of the software maintenance organization are

to approve the maintenance application, formulate and imple-
ment the maintenance plan, control and manage the maintenance
process, be responsible for the review of software maintenance,
organize the acceptance of software maintenance, and ensure the
completion of software maintenance tasks.

 3. Software maintenance process
First understand the existing software, then modify the existing

software, and finally review and accept the modified software. The
following steps can be followed:

 1. Collect software maintenance information;

 2. Determine the type of software maintenance;

 3. Application and approval of software maintenance;

 4. Planning and implementation of software maintenance;

 5. Software maintenance review and acceptance.

2.2 EMBEDDED SOFTWARE ENGINEERING MANAGEMENT
Software quality and reliability are directly related to the success or fail-
ure of system development. Therefore, how to ensure the quality of soft-
ware products has always been a problem that the software engineering

Embedded Software Engineering and Quality Characteristics    ◾    59

community has paid great attention to and committed to solving. In the
face of the software crisis in the late 1960s, the international software
community has jointly discussed the solution, and the only conclusion is
to absorb the engineering experience of hardware for software develop-
ment, that is, to implement software engineering. In the past few decades,
the international software engineering community has been exploring
and developing the implementation methods of software engineering.
Now software engineering has become an independent discipline.
Practice has fully shown that the implementation of software engineer-
ing is indeed the only effective way to ensure software quality and solve
software crisis.

The core of implementing software engineering and ensuring software
quality is to organize software development with software engineering
methods. As we all know, product quality mainly depends on the quality
of the product development process. The same is true of software prod-
ucts. The quality of software mainly depends on the development process
of software. As software products are “the product of human brain logic”,
once formed, software products have the characteristics of “invariability”
and “no physical loss” without artificial changes. Therefore, the quality
of software products is mainly determined by the software development
process.

Organizing software development with software engineering method
includes two aspects: developing software with software engineering
method, that is, engineering development of software; manage software
development with software engineering method, that is, engineering man-
agement of software.

People usually say that the quality of software is designed (developed)
and managed. To ensure the quality of embedded software, we must pay
attention to the engineering development of software on the one hand, and
the engineering management of software on the other hand, both of which
are indispensable.

2.2.1 Software Engineering Management

The engineering management of software is extremely important.
Summing up the experience and lessons of embedded system software
development at home and abroad, we can think that management is still
the key to determine software quality.

Software engineering management refers to a series of organization,
planning, coordination, and supervision that must be carried out for a
software engineering project to determine and meet the needs. Over the

60    ◾    Embedded Software System Testing

years, a large number of investigations have found that management is still
the key to the success of software development projects.

As early as the mid-1970s, the U.S. Department of Defense organized
forces to study the reasons for the failure of software projects and found
that 70% of the failed software projects were caused by poor management.
Therefore, it is believed that management affected the overall situation,
and set off an upsurge of research on software management technol-
ogy. Twenty years later, according to three classic research reports in the
United States, this situation has not changed: software development is still
difficult to predict, and only about 10% of projects can deliver software
that meets the needs at the predetermined cost and schedule. Management
is still the main factor for the success or failure of software projects. It is
pointed out that rework in the development process is a sign of immature
software process.

Software engineering management has the following characteristics:

• Without proper management, software development cannot be com-
pleted well, and there is no software engineering.

• The larger and more complex the software engineering project is, the
larger the proportion of management workload in the whole soft-
ware development workload is.

• The basic goal of management is to meet the predetermined require-
ments of the engineering project at the minimum cost, and the basic
task is to ensure that the software requirements are properly deter-
mined and satisfactorily realized.

The key of software engineering management is:

• Control the whole process of software development;

• Comprehensive management of software quality;

• Establish a multi-level software development and management system.

2.2.2 Software Development Methodology

As far as the current embedded system software is concerned, the engi-
neering development of software is mainly related to the methodology of
software development.

Embedded Software Engineering and Quality Characteristics    ◾    61

Current software development methodologies mainly include:

 1. Structured approach
Structured methods include structured analysis, structured

design, structured programming and structured testing.
The structured method believes that the software system exists in

a certain structural form and is composed of several subsystems. The
software system can be decomposed from top to bottom to low-level
modules according to certain criteria.

At present, most embedded software still adopts structured devel-
opment methods.

 2. Object-oriented method
The object-oriented method is to construct the model and orga-

nize the software system with the object as the center. This method
believes that the objective world is composed of objects, and the
interaction and connection between different objects constitute dif-
ferent systems. The method space of using computers to solve prob-
lems should be consistent with the problem space of the objective
world.

The object in the object-oriented method is a package composed
of data and its operations. Objects are instances of classes. A class is a
collection of objects with the same properties and services.

 3. Clean room method
The clean room method is a formal method of requirement analysis

and design based on the structural analysis and design method. This
method believes that the software programming team should strive
to develop a system that is almost error free before entering the test.

 4. Formal method
The formal method is based on strict mathematical proof, which

requires that the specification of software requirements should be
described in formal language to ensure its correctness, and then
through a series of transformations until an executable program
is generated. The software development based on formal meth-
ods plays a positive role in the subsequent model-based software
development.

62    ◾    Embedded Software System Testing

 5. Model-based software development
With the continuous evolution of software engineering technology,

model-based systems engineering (MBSE) and software engineering
(MBSwE) are gradually replacing the traditional software develop-
ment methods, and are increasingly valued by the software devel-
opment community. The model-based development combines the
physical model of the system with the embedded software to ensure
the coordinated work of all components of the system. Through the
unified construction of professional models and integrated collab-
orative simulation, the technicians of all disciplines and links can
more intuitively understand and express the embedded system, and
improve the consistency and automation of development.

To sum up, in embedded software development, the choice of
development methodology depends on the characteristics of the soft-
ware project, the available support environment and technical sup-
port, as well as the technical level and experience of developers. Since
the above software development methodology has professional tech-
nical explanations in many software engineering books, this book
will not repeat it.

2.3 EMBEDDED SOFTWARE QUALITY FEATURES
Several concepts related to software quality are as follows:

• Software quality: software quality is the degree to which a software
product meets the user’s requirements.

• Software quality management: software quality management is a
coordinated activity that commands and controls the organization
in terms of software quality.

• Software quality control: software quality control is the measure-
ment and monitoring of the process of developing available software
products.

According to the above definition, software quality is the degree to which
a set of inherent characteristics of a software product meet the user’s use
requirements. To make the quality of software products meet the require-
ments of users, software quality management must be implemented. The
author discusses process control from the perspective of software qual-
ity management. It is to discuss the quality control of software lifetime

Embedded Software Engineering and Quality Characteristics    ◾    63

process, especially the software development process. As long as these
processes are properly controlled in terms of quality, the quality of the
developed software products can meet the requirements of users.

According to modern software engineering thought, the core of soft-
ware quality control also lies in process control. Software quality char-
acteristics are a set of attributes that describe and evaluate the quality of
software products. According to ISO/IEC 25051:2014 software engineer-
ing systems and software quality requirements and evaluation (SQuaRE)
and GB/T 25000.51-2016 systems and software engineering systems and
software quality requirements and evaluation, software quality can be
defined as 8 characteristics and 39 sub-characteristics.

The eight quality characteristics of software are as follows:

•	 Functionality: when the software is used under specified conditions,
the software product meets the specified requirements and implicit
requirements.

•	 Performance efficiency: under specified conditions, the performance
level and efficiency that software products can provide are related to
the resources they use.

•	 Compatibility: the ability of software products to exchange informa-
tion with other software products.

•	 Usability: when used under specified conditions, it is an attribute
related to the effort required by users to use the software.

•	 Reliability: the ability of software to realize its specified functions
under specified conditions and within a specified time interval.

•	 Information security: the ability of software products in terms of
confidentiality, integrity and resistance to external intrusion and
theft.

•	 Maintainability: the modularity level of software products and the
ability to be modified, tested, and maintained.

•	 Portability: the ability of software products to move from one envi-
ronment to another.

See Figure 2.2 for the relationship between the above 8 features and their
derived 39 sub-features.

64    ◾    Embedded Software System Testing

System
/ software product quality

Functionality Efficiency Compatibility Accessibility Reliability Safety Maintainability Portability

Functional
Completeness

Functional
Correctness

Functional

Time

appropriateness

Characteristics

Resource
availability

Coexistence

Interoperability

Identifiability

Learnability

Operability

User error
prevention

User interface
comfort

Accessibility

Adaptability

Ease of
Installation

Replaceability

Maturity

Usability

Fault tolerance

Recoverability

Confidentiality

Integrity

Non repudiation

Verifiability

Identifiability

Modularization

Reusability

Analyzability

Modifiability

Testability

FIGURE 2.2 Quality characteristics and sub-characteristics of software.

2.4 SUMMARY
In this chapter, combined with software engineering technology, we give
the development model of embedded software, describe each stage of
embedded software development in detail, and describe the main work,
methods and tools, stage products, completion marks and main control
methods involved in each stage. In addition, combined with the current
practical requirements of how to make software engineering management,
the main methods and technologies of software engineering management
are given. Finally, combined with the requirements of software quality
control, the quality characteristics of embedded software are given.

Software engineering is an engineering methodology that guides the
development and maintenance of computer software. It is a discipline
that studies the construction and maintenance of effective, practical and
high-quality software with engineering methods. This chapter uses lim-
ited space to introduce the embedded software engineering process and
management technology, and finally gives the quality characteristics of
embedded software.

65

C h a p t e r 3

Embedded Software
System Testing
Techniques Based on
Formal Methods

The theory of embedded software automation system testing based
on formal methods is one of the most significant features of this book,

which stems from the many advantages of formal methods. This chapter
will start from formal testing methods, propose a real-time extended finite
state machine model, and then explore embedded software system testing
automation techniques based on this model.

3.1 OVERVIEW OF SOFTWARE FORMAL
TESTING TECHNIQUES

3.1.1 Overview of Software Formal Testing

Formal methods originated from Dijkstra and Hoare’s program verifi-
cation. Formal methods have been studied for decades, but there is still
no uniform definition of formal methods. The Encyclopedia of Software
Engineering defines formal methods as “formal methods for developing
computer systems are mathematically based techniques used to describe
the properties of systems. Such formal methods provide a framework

DOI: 10.1201/9781003390923-4	

https://doi.org/10.1201/9781003390923-4

66    ◾    Embedded Software System Testing

within which one can describe, develop, and systematically verify sys-
tems”. Usually, any method that uses rigorous mathematical tools and has
precise mathematical semantics can be called a formal method. One way
of classifying formal methods is shown in Table 3.1.

Formal methods have been used for modeling and testing communi-
cation protocols and embedded software, and many research results have
been achieved. They are also increasingly being used in safety-critical
software verification. The European Space Agency and NASA highly
recommend using formal methods for the development of safety-critical
software. In practice, real-time embedded software is often safety-crit-
ical software. Formal methods in real-time embedded software system
testing can eliminate ambiguity in testing, enhance the accuracy and
consistency of testing, and improve the degree of test automation and
test efficiency.

Domestic and international technology development and research show
that the current research areas of software modeling and testing tech-
niques based on formal methods are summarized in Figure 3.1.

TABLE 3.1 A Classification of Formal Methods

Serial Number Classification Method

1 Model-based approach CTL model, Z-method
VDM method, state machine model, UML

2 Algebraic-based approach OBJ method, CLEAR method
3 Process algebra-based approach CSP, CCS
4 Logic-based approach temporal logic, propositional logic,

higher-order logic
5 Network-based approach Petri nets, predicate transformation nets

language
UML

Formal specification

Software testing

technology based on

formal method

R
T

R
S

M

C
S

P
/T

C
S

P

Finite state machine

S
tate d

iag
ram

A
ctiv

ity
 d

iag
ram

C
o

m
b

in
atio

n
 o

f
m

u
ltip

le d
iag

ram
s

F
S

M

E
F

S
M

/C
F

S
M

/N
F

S
M

tim
ed

 au
to

m
ata T

A

Petri net

T
im

ed
 P

etri n
ets

Markov Chain

E
R

-n
ets

F
S

M
 o

f p
ro

b
ab

ility

ch
aracteristics

Z
/O

b
ject-Z

/R
eal-

T
im

e O
b

ject-Z

T
T

C
N

-3

Custom formal

test description
language

T
cl/T

k
ex

p
an

sio
n

A
T

L
A

S

C
-S

crip
t

T
estT

alk

S
eq

u
en

ce d
iag

ram

FIGURE 3.1 Software modeling and testing techniques based on formal methods.

Embedded Software System Testing Techniques    ◾    67

3.1.2 Formal Statute-Based Language

The representative embedded software modeling and testing techniques
based on formal specification languages are RTRSM, CSP, TCSP, Z lan-
guage, TTCN-3 language, and ATLAS language. The modeling of real-time
embedded software should support domain features such as event-driven,
state transition description, complex dynamic interaction behavior, and
strict time constraints.

Real-time Requirements Specification Model (RTRSM) is a visual mod-
eling language aiming at the requirements specification for embedded soft-
ware systems. It is based on an expanded Hierarchical Concurrent Finite
State Machine (HCA) as its core, with templates that support synthesis as
its basic component units. It can use transition validity and event reserva-
tion mechanisms to describe temporal constraints, with a strong ability
to describe temporal conditions, which can naturally and directly sup-
port modeling of interaction behavior, executable and with good formal
semantics. The RTRSM supports the decomposition of the system through
templates in the form of tables, including interfaces and data definitions
and formalized rule sets equivalent to state diagrams.

CSP (Communication Sequences Processes) is a formal language pro-
posed by Hoare in 1978 to model systems with concurrent relationships.
It is based on sequential communication and describes the behavior of
processes mainly through the set of process events and the trajectory of
processes. The relationship between processes can be described by concur-
rency, selection, recursion, etc. Based on the CSP, the time factor is added
to form the TCSP (Timed CSP), a description language of the temporal
communication sequence process. This language has an excellent formal
basis, well-defined syntax-semantics, and a clear and concise representa-
tion of concurrent processes with time.

The Z language was developed by the Programming Research Group
(PRG) at Oxford University in England. It is a language for writing specifi-
cations or a representation. IBM has used it to rewrite specifications for its
User Information Control System (CICS) with great success, reducing soft-
ware development costs by 9% and greatly influencing the Z language. Z is
a formal specification language based on first-order predicate logic and set
theory, with the advantages of precision, simplicity, and non-dualism. It is
conducive to ensuring the correctness of programs, especially for develop-
ing high-security systems where field debugging is not possible. Another
key feature is the ability to reason and prove Z specifications. It allows
software developers or users to quickly identify inconsistencies in specifi-
cations and improve software development efficiency with the continuous

68    ◾    Embedded Software System Testing

Preprocessing

compiler

Linear

predicate

converter

Linear
inequality

group
converter

Find region

boundary
vertices

Find the test point

near the boundary

of the area

Output to

input inverse

transform

Z specification
Input / output variable

constraint relationship

linear

predicate

vertex Test point

Linear
inequality
system

Test case

FIGURE 3.2 Automatic test case generation based on Z language.

development of technology by the emergence of some extensions of Z lan-
guages, such as Object-Z and Real-Time Object-Z. A technique for auto-
matic generation of software test cases based on Z specification is shown
in Figure 3.2. This is done by finding the linear predicates describing the
input and output of the software through the analysis of the software Z
specification. The above linear predicates are converted into a correspond-
ing set of linear inequalities, and the corresponding region boundary ver-
tices are obtained by solving the set of linear inequalities. The vertices near
the region boundary are found, and the test cases are brought by inverting
the input and output. In addition, there is also a method of software test-
ing and metrics using Z specification. Still, this method requires testers
with rich testing experience and a profound mathematical foundation to
complete, and the efficiency of testing is relatively low because it is manual
testing. Since the Z language is based on mathematical concepts and is
abstract and concise, its formal specifications are too abstract and diffi-
cult to understand. At the same time, software developers and testers are
used to non-formal methods and lack training in formal-based methods,
and the Z language still lacks support from automation tools. The proof
of correctness of formal specifications based on the Z language is time-
consuming and laborious, thus limiting its engineering applications.

TTCN-3 (Testing and Test Control Notation 3) is a text-based test
description language that has been improved and extended by TTCN
(Tree and Tabular Combined Notation), unified the original confusing
concepts and definitions simplified the representation. TTCN-3 applies
to the description of various interactive systems and has been widely used
in the fields of protocol testing, web service testing, and CORBA-based
platform testing. The current test field exists to use a graphical repre-
sentation of TTCN-3 and then convert the graph to a code description.
The specific conversion rules are as follows: the graphics are represented by
MSC (Message Sequence Chart), which can sufficiently express the commu-
nication behavior of the system and its cross-linked environment. TTCN-3
describes the complete test set through modules, and a module consists of a

Embedded Software System Testing Techniques    ◾    69

UML

Sequence Chart

Basic MSC

Case
TTCN-3 Test

Activity
Diagram

HMSC

TTCN-3

Part
Moule Control

Test Suite

FIGURE 3.3 TTCN-3 test set building idea.

definition part and an operation part. The definition gives test components,
test ports, data types, variables, constants, functions, and test cases. The con-
trol part defines some local definitions and calls test cases and controls their
execution order. The basic MSC diagram can describe the test actions repre-
sented in the test cases while we can organize the test cases represented by the
basic MSC at a higher level through HMSC (High-Level MSC) (Figure 3.3).

The ATLAS language is a UUT description language defined by the
international test standards ABBET (Wide Area Test Environment) and
SMART (Standard Modular Avionics Repair and Test). It uses a signal-
oriented description of the process of interpreting the test requirements of
a UUT for execution on a specific ATS.

There are two more mature versions of ATLAS, ARINCStd626 (led by
ARINC and released in 1976) and IEEEStd716 (led by SCC20 (Standard
Coordinating Committee 20) established by IEEE and released in 1985).
With engineering applications, ATLAS gave an effective way to design
ATS in a signal-oriented way and exposed many problems.

 1. Too many changes in ATLAS versions and significant changes in dif-
ferent versions of the standard.

 2. Content is nonsense and has too many keywords.

 3. The long update cycle of the ATLAS language does not keep pace
with changing requirements and new technological developments.

70    ◾    Embedded Software System Testing

 4. Expensive development tools, high training costs, and little support
documentation.

 5. With the continuous introduction of new technologies, the ATLAS sys-
tem has become large and cluttered, with problems such as vague signal
definitions, indistinguishable properties of similar signals, repeated
definitions of the same term, and repetitive keyword definitions.

The problems mentioned above limited the further development of
ATLAS. Recognizing this problem, SCC20 started to apply various new
software technologies to the upgraded version of ATLAS to transform
ATLAS, so ATLAS2000 was proposed. ATLAS2000 is a multi-level struc-
tured language whose foundation consists of a kernel and a proto-language
for creating test application requirements. The modular structure of the
ATLAS2000 language system enables the encapsulation of reusable test
units. Such a structure allows the user to develop and describe complex
test requirements based on the underlying units.

3.1.3 Based on Finite State Machine and Time Automation Models

A state machine is a formal method for describing the state and state tran-
sitions of a system. Usually, a state machine consists of states, transitions,
events, activities, actions, etc. The behavior of an object can be precisely
described using a state machine. The use of state machines is widespread
in computer science, especially in the modeling and verification of com-
munication protocols and embedded software.

Since real-time embedded software is state-based, the finite state
machine (FSM) model describes the system’s behavior in terms of trig-
ger events and state transition. It is suitable for the formal descrip-
tion of the development and testing of real-time embedded software
in general. In addition, numerous extension methods based on FSMs
have emerged to enhance the description capability of FSMs, simplify
the description, make the changes between states clear, and finally
improve the description and analysis of local and even the whole model
such as CFSM (Communicating FSM), EFSM (Extended FSM), CEFSM
(Communicating EFSM), PFSM (Probability FSM), and so on. In addi-
tion, Timed Automata (TA), which is developed based on FSM, has also
achieved more research results.

The finite state machine-based testing model assumes that the soft-
ware is always in a certain state at a given moment. The current state

Embedded Software System Testing Techniques    ◾    71

determines the possible inputs to the software, and the current inputs
determine the transition from that state to other states. The FSM
model is particularly suitable for test methods expressing test data as
a sequence of inputs and automatically generating test sequences using
graph traversal algorithms.

FSMs can be represented as state transition diagrams or transition
matrices, and test cases can be generated based on state coverage or transi-
tion coverage. FSM models have a mature theoretical foundation, can be
designed, manipulated, and analyzed using formal languages and autom-
ata theory, and are suitable for describing reactive systems. Early classical
software testing methods based on FSM include T method, U method, D
method, and W method. With the continuous development of FSM tech-
nology, test methods based on extended FSMs gradually emerged, such as
the EFSM-based test input data automatic selection method. It automati-
cally selects the test data required for test input through interval reduction
and segmented gradient optimal descent algorithms. As a result, it can
replace the manual selection of test data work, improves test efficiency, and
significantly reduces the cost of the software testing process. The extended
finite state machine (EFSM) can portray the behavior of software systems
more accurately than the FSM. Due to preconditions for transition in the
EFSM, if we simply use the FSM-based testing method for the EFSM, the
process will create many problems, such as the test sequence is not execut-
able, uncertain, and other problems.

The Timed Automata (TA) is obtained by adding a clock constraint to
the transition and an invariant constraint to the state based on the tradi-
tional FSM. The clock constraint added to the transition means that the
transition is activated only when this constraint is satisfied, whereas the
invariant constraint added to the state means that the system can stay in
this state only when this invariant is satisfied. A real-time system test-
ing method based on the extension of time automata is that the system
model described by time-safe input/output automata is converted into a
stable symbolic state transition graph without abstract time-delayed tran-
sition. Then a testing method based on the marked transition system is
used to statically generate a sequence of transition actions that satisfy
various structural coverage criteria. Finally, a procedure for constructing
and executing test cases based on the transition action sequences is given,
introducing a time-delay variable objective function and using a linear
constraint solver to dynamically solve for the time-delay variables in the
transition action sequences.

72    ◾    Embedded Software System Testing

3.1.4 Based on the UML

The Unified Modeling Language (UML) is a general-purpose graphical
modeling language for object-oriented development, which is widely used
in software engineering and is gradually becoming an industry standard.
UML supports the modeling of large, complex systems by capturing infor-
mation about the system’s static structure and dynamic behavior and is
particularly suitable for real-time embedded systems. Many studies have
combined formal semantics and graphical methods to obtain easy-to-use
modeling methods with formal features using relevant elements of UML.

In the UML model-based testing of real-time embedded software sys-
tems, the use of UML for modeling real-time embedded systems mainly
uses use case diagrams, state diagrams, activity diagrams, sequence
diagrams, etc. Among them, state diagrams, activity diagrams, sequence
diagrams, etc. can be used to describe the behavior of real-time embed-
ded systems, and methods of modeling and testing using a variety of
UML diagrams have emerged.

 1. UML state diagram-based testing method
UML statecharts EFSMs. It emphasizes modeling complex real-

time systems, provides a framework for hierarchical statecharts, i.e.,
a single state can be decomposed into many lower-level states, and
describe concurrency mechanisms. Therefore, it is increasingly used
in the field of real-time embedded software testing. A representative
UML state diagram-based automation tool, DAS-BOOTo, can auto-
matically generate test stub modules and test scripts based on test
guidelines. The system first exports the state diagram to an XML file
from a UML model editing tool using the XMI tool. It then reads
the state diagram model from the XML to generate the correspond-
ing test case scripts and test stake modules. Still, the approach does
not consider complex state model diagrams such as the hierarchi-
cal structure of the state diagram and concurrent states. In addi-
tion, combining formal methods to generate test cases using state
diagrams has also been studied, such as Z language and Petri nets.
In addition, there is also research on generating test cases for UML
state diagrams containing concurrency. The core is to flatten state
diagrams’ hierarchical and concurrent structure and then gener-
ate test cases according to control flow and data flow, respectively.
This approach provides a valuable idea for combining UML state
diagram-based and EFSM testing methods.

Embedded Software System Testing Techniques    ◾    73

Generate test

Establish activity diagram model

outline model

Get data space
 description

Generate test
 outline

Generate basic
data set

Generate use
 case model

Generate test
 case set

FIGURE 3.4 Test case generation process based on test outline.

 2. UML activity diagram-based testing method
UML activity diagram is essentially an automaton that describes

the sequence of activities that a system must perform to accomplish a
specified function or task. As for complex real-time embedded soft-
ware systems, various complex operational processes are undoubt-
edly crucial for testing. Therefore, activity diagrams become essential
for real-time embedded software functional testing, especially for
operational process-oriented testing. Figure 3.4 presents a test case
generation technique through a UML activity diagram, which pro-
poses a test outline concept. A test outline is composed of a collec-
tion of all test scenarios designed according to certain test criteria.
A basic data set is generated after obtaining the input data space of
various interaction operations with certain test criteria. Then a test
case model is then constructed based on the test outline and the basic
data set. The final set of test cases is designed and generated based on
a certain optimization combination strategy.

In addition, there are also testing methods based on UML use case dia-
grams, sequential diagrams, and those based on a combination of multiple
UML diagrams, which are not repeated here.

3.1.5 Based on the Petri Net Model

The Petri net model can better describe concurrent systems, representing
the control flow with a set of states and transitions with tokens. Petri net is
a mathematical and graphical tool for describing and analyzing systems.
For information processing systems with concurrent, asynchronous, dis-
tributed, parallel, uncertainty, or randomness, it can be easily analyzed
using this method to obtain information about the system structure and
dynamic behavior and has been widely used in simulation modeling and
testing of complex systems.

74    ◾    Embedded Software System Testing

Petri net variants for real-time system modeling include timed Petri
nets (TPNs) and ER nets. In these variants, location, token, transition, etc.
can be associated with time constraints. TPN improves Petri nets by intro-
ducing the relative time factor of transition implementation in the vari-
ants, enabling them to be applied to the analysis of real-time systems. TPN
can be analyzed for both system behavior and temporal attributes, where
reachability and schedulability can be used as both system performance
references. It is more effective to analyze the performance of complex sys-
tems with real-time concurrency. Typical representatives of timed Petri
nets include Merlin’s timed Petri nets, Coolahan’s time-delay Petri nets,
and advanced random Petri nets by Lin Chuang, a domestic scholar. The
Merlin’s timed Petri nets are most commonly used.

The testing method based on the Petri net model can describe the sys-
tem behavior in a highly abstract way, shielding the system hardware
implementation details, and is mainly used to verify the correctness,
safety, and reliability of the system design. However, the problem with use
case generation based on this model is that it can only generate the tempo-
ral information of event sequences but not the actual test input data (e.g.,
quantitative temporal information data).

3.1.6 Based on the Markov Chain Model

Markov chain model is a statistical model based on statistical theory,
which can describe the use of software and has been widely used in mod-
eling complex systems and statistical testing of software. Markov chain
is a kind of FSM with probabilistic transition characteristics, which can
automatically generate test cases according to the transition probability
between states and analyze the test results.

The Markov chain model is mainly applicable to statistical testing.
Many kinds of software, the average expected time of state and transition
coverage can be obtained through simulation to measure the performance
index and reliability index of software. Thus, facilitating the planning of
testing time and cost for large-scale software systems in the early stage of
development. A team in China uses controlled Markov chain theory to
design and optimize software testing strategies. They proposed software
testing cybernetic ideas, discussed adaptive software systems within the
framework of the controlled Markov chain method, and compared it with
random testing. They found that the adaptive testing method has greater
superiority compared with the traditional random testing method.

Embedded Software System Testing Techniques    ◾    75

3.1.7 Based on a Custom Formal Test Description Language

In addition to the research mentioned above on existing formal methods,
numerous research results have been achieved in researching self-defined
languages at home and abroad. Since the introduction of scripting technol-
ogy is an essential support for test automation, most of these formal meth-
ods based on self-defined languages are dedicated scripting languages for
specific test systems or tools. The typical test scripting techniques are sum-
marized in Table 3.2.

The U.S. Jet Propulsion Laboratory uses extended Tcl/Tk as the test
script language, through which most of the functions within the entire
vehicle lifetime can be simulated. The test scripts are loaded through the
upper graphical development environment, downloaded to the network
nodes (subsystems). Each test script completes the simulation test of the
corresponding functions on its respective node through the script inter-
preter. However, this environment has poor real-time performance, cannot
control the time characteristics, can only perform functional simulation,
and is a distributed system, a semi-automatic test environment. China’s
Huazhong University of Science and Technology has developed a simple
network protocol design and test platform (SNPDTP) for the Internet.
They have developed its test scripting language (C-Script), which uses a
simplified C syntax and modifies some features, such as adding a time-
driven mechanism and support for the description of network protocols.
Since the system is developed for network protocol design and testing,
it does not consider the real-time features and test feedback processing
needed for embedded software and only simulates the implementation of

TABLE 3.2 Summary of Common Test Scripting Techniques

Script Type
Structured

or Not
Script

Intelligence Script
Test Case

Definition Processing

Linear Script Not Constants None Script Descriptive
Structured
Scripts

Yes Constants if/loop statements Script Descriptive

Shared
Scripts

Not or Yes Constants and
Variables

if/loop statements Script Descriptive

Data-Driven
Scripts

Yes Variables if/loop statements
Data Reading

Scripts
and Data

Descriptive

Keyword
Script

Yes Variables and
keywords

if/loop statements
Data Reading
Keyword
explanation

Data Descriptive

76    ◾    Embedded Software System Testing

the network environment in a software way. Still, some of its design ideas
can be learned. The language uses a separation of the components of the
test description. It forms a test script in a programming language, which is
then interpreted and executed by an interpreter to drive the test.

However, this method is only able to test for non-real-time software.
It does not introduce the requirements for describing temporal charac-
teristics (such as concurrency, synchronization, and priority) in real-time
software testing, which is difficult for users to grasp quickly. Hence, the
method is not suitable for the description of real-time embedded software
testing.

3.2 EMBEDDED SOFTWARE FORMAL
TESTING TECHNIQUES

3.2.1 Basic Concept

 1. State Machine
State machines are a formal method for describing system states

and state transitions, a theoretical basis for computer science, and
a powerful modeling approach. The use of state machines is wide-
spread in computer science, especially in modeling and verification
of communication protocols and real-time embedded software.

In general, the behavior of a system can be categorized into three
types.

 1. Simple behavior: The system always responds in the same way,
independent of the system history for a given input.

 2. Continuous behavior: the system’s current state is history-depen-
dent and cannot identify a single state.

 3. State-based behavior: the current state of the system is history-
dependent and can be clearly distinguished from other system
states.

Since real-time embedded software is mostly state-based and
the FSM model describes the system’s behavior in terms of trig-
gering events and state transition, it is suitable for the formal
description of the development and testing of real-time embed-
ded software in general.

Embedded Software System Testing Techniques    ◾    77

A traditional state machine is a diagram showing states and
state transitions. A state machine consists of five parts: states,
transitions, events, activities, and actions.

 1. State: represents the condition of a model during its lifetime,
such as satisfying certain conditions, performing certain
operations, or waiting for certain events. The lifetime of a
state is a finite period.

 2. Transition: represents the link between two states, and events
can trigger transitions between states.

 3. Events: generated at a specific time, which can trigger state
transitions, such as signals, creation and destruction of
objects, timeouts, and changes in conditions.

 4. Activity: a non-atomic execution performed in a state
machine, consisting of a series of actions.

 5. Action: An executable atomic computation that changes state
or returns a value.

The behavior of an object can be precisely described using
state machines: from the initial state of the object, it starts
responding to events and executing some actions, these
events cause state transitions, the object starts responding
to states and executing actions again in the new state and
so on until the end. In computer science, the use of state
machines is widespread: in compilation technology, FSMs are
usually used to describe the lexical analysis process; in the
process scheduling of the operating system, the transforma-
tion relationship between various states of the process is usu-
ally described by state machines; in object-oriented analysis
and design, the state of the object, the transition of the state,
the event that triggers the state transition, and the object’s
response to the event can be described by state machines.

 2. Finite State Machine
An FSM is a type of state machine, and a FSM model is a formal

model. A FSM can be represented as a six-tuple (S, S0, δ, λ, I, O).

S: the set of finite states.

78    ◾    Embedded Software System Testing

S0: the initial state of all states.

δ: state transition function.

λ: output function.

I: limited input character set.

O: Limited output character set.
According to the nature of FSM, it can be divided explicitly as

follows.

• Complete FSM: for an FSM, if for each state and input, δ and λ
are defined, then it is said to be a complete FSM; otherwise, it is
called an incomplete FSM.

• Reset capacity FSM: for a FSM, an FSM has a reset function if
there exists an input that, for any state, causes the FSM to transi-
tion to the initial state.

• Initially connected FSM: an FSM is said to be initially connected
if it can reach every state from the initial state.

• Strongly connected FSM: An FSM is said to be strongly con-
nected if for each pair of states (Si, Sj) in the FSM, there exists a
sequence of inputs that allows a transition from state Si to state Si.

FSMs can be classified according to whether or not they use
input signals.

– Mealy machine: its output signal is related to the current state
and all input signals, i.e., the output of a mealy-type FSM
can be viewed as a function of the current state and all input
signals.

– Moore machine: its output signal is related to the current
state only, i.e., the output of a Moore-type finite state can be
regarded as a function of the current state.

– FSMs can be divided according to whether the transition
state and output are determined.

– DFSM: for a given input and all states, the transition state and
output are determined.

– NFSM: for specific outputs and already existing states, the
transition states and outputs are indeterminate.

Embedded Software System Testing Techniques    ◾    79

There are three main representations of FSMs: graphical, tabu-
lar, and matrix methods, among which the graphical method is
more commonly used.

The advantages of FSMs are that they are relatively simple,
predictable, easy to implement, and easy to test. Disadvantages
of FSMs: (1) When dealing with complex problems, there is a
possibility of state space explosion; (2) In multi-FSM systems,
the state of the system is the Cartesian product of all FSM states,
and the number of states of the system has the problem of state
combination complexity, and deadlock can occur; (3) FSMs can
better describe the transition characteristics between states, but
FSM cannot well describe the transformation between input
and output characteristics (i.e., transformation characteristics of
data); and (4) FSM only reflects the relationship between protocol
events and protocol states and cannot express other protocol ele-
ments: protocol variables, protocol behaviors, predicates, etc.

 3. Extended Finite State Machine
The main purpose of EFSMs is to enhance the description capa-

bility of FSMs, simplify the description, make the changes between
states clear, and eventually improve the description and analysis
capability of local and even the whole model. It can be used as a
tool for later developers to describe and solve. There are four com-
mon types of EFSM models: NFSM (Non-deterministic FSM),
CFSM (Communicating FSM), EFSM (Extended FSM), CEFSM
(Communicating EFSM), and PFSM (Probability FSM), and the evo-
lution of their model extensions is shown in Figure 3.5.

Among them, EFSM is a relatively more commonly used one in
software testing. An EFSM is a six-tuple < S, S0, I, O, T, V>.

S: the set of non-empty finite states.

S0: the initial state of all states.

I: a non-empty set of input messages.

O: a non-empty set of output messages.

T: a non-empty state transition set with t ∈T, and
t = Head()t I, ()t P, ()t O, operation/ ()t t, Tail() , where Head(t)
is the departure state of transition t; I(t) is the input message
of EFSM contained in the input set I or is empty; P(t) is the

80    ◾    Embedded Software System Testing

FSM

NFSM

EFSM

CFSM

PFSM

Parameterized

EFSM

CEFSM

Introduce uncertainty

Introduce variables

Multiple
interactive FSM

Determine the probability
of occurrence

Introduce variables

Combination of
the two

FIGURE 3.5 Several common FSM extension models.

precondition for the execution of transition t, which can be
empty; operation is the operation performed during state transi-
tion, which generally consists of a series of variable assignment
statements or output statements; O(t) is the output of the message
contained in the output set O, which can be empty; Tail(t) is the
arrival state of transition t.

V: the set of variables, which can be expressed as V = <IV, CV, OV>,
where IV represents the set of input variables, which the tester
can control; OV represents the set of output variables; CV rep-
resents the set of environment variables, which can be local or
global variables, and variables that are neither input nor output
variables can be classified as environment variables. The tester
does not control CV and OV, and their values are determined
by the values are determined by the operation of state transition.

As seen from the definition of EFSM, it adds variables, operations,
preconditions for transition, etc. to the FSM model. EFSM has a stor-
age function, and it has a default reset (Reset) function for each state,
i.e., δ ()S ri , = S0. With the EFSM model, the behavior of software
systems can be described more precisely, so it can be widely used
in object-oriented software systems for the behavior of objects and
the interaction between objects. EFSM overcomes the last two of the
disadvantages mentioned above of FSM better. Still, the problems of
consistency, reachability, and synchronization have not been solved,
and it introduces a new problem – the uncertainty problem.

Embedded Software System Testing Techniques    ◾    81

3.2.2 FSM-Based Software Testing Techniques

In 1956, Moore established a framework for finite state testing, defined the
concepts of distinguishing and homing experiments, and gave algorithms
for determining state equivalence and constructing homing sequences,
one of the earliest pieces of literatures introducing FSM testing.

There are four classical testing methods based on FSMs: the T method,
U method, D method, and W method.

T method: A FSM is assumed to be strongly connected. The test input
sequence corresponds to the state transitions in the statute descrip-
tion and is generated randomly until all state transitions are covered.
T method is simpler and has the disadvantage of a large amount of
redundancy in the test input sequence, and there may even be loops.
It also has a poor error detection capability, as it can only detect the
presence of a transition but not the states reached by the transition.

U method: The premise of the U method is to assume a minimal, strongly
connected, and complete FSM. The method requires an identifica-
tion sequence for each state in the FSM, called a unique input/output
sequence (UIO). The UIO sequence uniquely identifies the states in
the FSM, and different states cannot have the same UIO sequence.
However, not all FSMs have UIO sequences, and if a FSM does not
have a UIO sequence, the method cannot be applied to construct a
test input sequence. For each change between states in a FSM, a test
subsequence for each transition can be generated by (1) inputting r
(reset, which is available for each FSM discussed here) to the FSM to
return the FSM to its initial state; (2) finding the shortest path SP(Si)
from the initial state to state Si; (3) inputting a symbol that can cause
the FSM to migrate from state Si to Sj; and (4) input the UIO sequence
for state Sj.

D method: The premise of method D is to assume a minimal, strongly
connected, and complete FSM. The method first constructs a dis-
tinguishing sequence (DS) for the FSM and then constructs a test
input sequence based on the distinguishing sequence. As with the
U method, not all state machines have a distinguishing sequence, so
the application of this method is somewhat limited.

W method: The premise of the W method is to assume a minimal,
strongly connected, and complete FSM. The method requires first

82    ◾    Embedded Software System Testing

generating a feature set W of the FSM and then constructing a test
input sequence based on the feature set W. The feature set exists as
long as the state machine is minimal and complete, so the method is
more applicable.

The feature set W is composed of a set of data such that for
each state in a FSM, the input α α…, , 1 k in W, the last bit output is
different, i.e., α α α α() ()… ≠ …, , , , 1 1M S M Si k j k (M is the FSM),
where Si and Sj are two different states in the FSM.

The principle of applying the W method test is similar to that
of the U method, and the feature set W serves to identify each
state in the FSM. For the FSM, the test sequence can be generated
according to the following steps: (1) construct the feature set W of
the FSM, where is an input character; (2) generate the β sequence
according to the steps in the U method, with the difference that
the UIO sequence of each state should be replaced by the feature
set W.

3.2.3  EFSM-Based Software Testing Techniques

	 1.	Test method based on extended UIO sequences
The most commonly used FSM-based test sequence genera-

tion method is the UIO method. UIO sequences exist in most state
machines, and UIO sequences are a subset of D sequences or W
sequences, and their lengths are shorter than the sequence lengths
obtained by D and W methods. The direct use of the UIO method
for EFSM models generates the unenforceability of test sequences
because the precondition of state transition is not considered.

Chun W, Amer P D. et al. were the first to introduce UIO sequences
into the EFSM model, but no definition of executable UIO sequences
and generation methods were given. For example, the Context
Independent Unique Sequence (CIUS) used in the EFSM-based test
sequence generation method proposed by a team considers the exe-
cutability of the test sequence only during the test sequence genera-
tion, and CIUS is used as a state discriminating sequence. CIUS is
also a UIO sequence. However, not every EFSM has CIUS, so the
applicability of this method is limited.

Ramalingam, Thulasiraman et al. proposed a method based on
transition executability analysis (TEA) called UIOE (Executable
Unique Input Output). Using TEA, a TEA tree is generated using

Embedded Software System Testing Techniques    ◾    83

a breadth-first strategy with state configurations as the nodes and
executable transitions as the arcs, which is extended to generate an
executable sequence of transition tests. This approach addresses the
executability of conversions and uses the overlap of unconverted
conversions between conversion subsequences to minimize the test
sequence. The UIOE method first converts the EFSM to a normal-
ized EFSM, configures the initial state, selects an executable transi-
tion to be tested with the current state as the header, and performs a
TEA extension to obtain the corresponding UIOE sequence. By per-
forming TEA expansion, we generate a TEA tree by analyzing the
executability of the transformations in the EFSM. Then, according to
the principle of “each conversion in EFSM is tested once”, the TEA
expansion is performed on the other conversions to be tested to gen-
erate the corresponding UIOE sequences until all the conversions are
tested. The final test sequence is formed by connecting all the test
events. If an EFSM is strongly concatenated and trap-free, then the
UIOE method always yields an executable test sequence.

The limitation of the UIOE method is the simplification of the
EFSM, where only environmental variables (i.e., some internal vari-
ables) exist in the model, and the initial values of these variables are
constants, so that executability analysis can be performed with sym-
bolic execution, without taking into account the input variables pres-
ent in each state transition.

 2. Convert EFSM to the corresponding FSM
To make better use of the existing FSM-based testing methods,

some researchers have tried to transform EFSM into its equivalent
FSM and then generate executable test sequences using the existing
FSM test sequence generation methods. But this transformation is
not simple. First, state transition behavior is interrelated with vari-
ables; second, state transition interacts with each other through
operations on transition and variables. This approach tends to lead
to “state explosion”.

Duale and Uyar have given a method for EFSM with certain
restrictions to automatically generate executable test sequences,
pointing out that the difficulty in automatic generation of test
sequences based on EFSM stems from the fact that the EFSM model
contains unreachable paths, causing unreachable paths due to the
presence of so-called contextual variables. The interdependence

84    ◾    Embedded Software System Testing

between variables creates behavioral and conditional conflicts that
make certain paths unreachable.

When all conflicts of the EFSM model are eliminated, the existing
FSM-based automatic test generation method can be directly utilized.
This method generates only reachable paths. However, the method
imposes certain restrictions on the EFSM model, such as specifying
that the specification consists of a single process and that there are
no pointers, recursive functions, or infinite loops. All conditions and
behaviors are linear, which also limits the use of the method.

 3. Generate EFSM test sequences based on standards
EFSM dataflow testing is usually based on a directed dataflow

graph. In practice, a criterion is selected that contains the dataflow
characteristics of EFSM. The criterion defines the paths to be tra-
versed, which are only a subset of all possible paths in the graph.
The selection of EFSM data flow test coverage criteria is a trade-off
process: the stronger the criterion chosen, the more thorough the
inspection of the IUT (implementation under test), and the weaker
the criterion chosen, the smaller the number of test cases required
and the relatively lower the testing cost.

The purpose of EFSM’s dataflow testing is to discover and test
data dependencies between EFSM’s state transitions, usually by
examining the association between variable definitions and usage.
Ural H defines the dataflow coverage standards All-use standard
and IO-df-chain standard. The All-use standard requires that each
variable be tracked from its definition to its usage association and
requires that the variable cannot be redefined during the tracking of
the variable. Suppose variable X is defined at node J and variable X
is used at node K. To track the association between variable defini-
tion and use, a define-clear-use path is constructed, which is the path
connecting node J to node K and node J is the only node in the path
that defines variable X. If such a define-clear-use path exists, then the
association of variable X with nodes J and K are called a define-use
pair, also called a du-pair, denoted as du (X, J, K). A test sequence
that can cover the define-clear-use path or du-pair of each variable
at least once meets the All-use criterion. The Io-df-chain criterion is
defined similarly to the All-use criterion. The difference is that the
io-df-chain criterion tracks the association between each output and
all inputs that affect those outputs.

Embedded Software System Testing Techniques    ◾    85

The control part of EFSM involves state transitions. In practi-
cal EFSM-based control flow testing, the test sequence is usually
required to cover each state transition in the EFSM at least once.
Chen et al. used the coverage criterion as the basis for test sequence
generation. This method converts the EFSM into a directed data flow
graph, labels the definition and use of variables on the flow graph,
defines and selects the data flow test coverage criterion, and selects
the test sequence and test data to meet this criterion. Based on this,
the test cases are extended to meet the control flow test coverage
criteria.

 4. Generate EFSM test sequences based on flow analysis
Combining the advantages of FSM and EFSM, the control flow

part uses the FSM test sequence generation method, and the data
flow part uses the EFSM data flow test method, which is also a class
of EFSM test sequence generation method that takes into account the
comprehensive testing of data flow and control flow.

Sarikaya, Bochmann G et al. applied the functional program test-
ing method to data flow testing of EFSM. The method uses the Data
Flow Graph (DFG) to simulate the information flow in the ESTELLE
specification and uses decomposition and functional partitioning to
obtain the functional modules of the specification’s data flow and
then tests these modules. This method does not consider the execut-
ability of the test sequence, and the resulting test sequence may not
be executable. Miller R, Paul S. first transformed the EFSM into an
equivalent FSM with modified inputs and outputs, without chang-
ing the number of states but increasing state transitions. Then a data
flow graph is constructed from this FSM and combined with the con-
trol flow graph (CFG) of the FSM to generate a test sequence that
tests both control flow and data flow and covers all defined-obser-
vation paths. This approach generates executable test sequences, but
assumptions about IUT, such as the variables used in IUT are acces-
sible by the tester, are not satisfied in many cases. Chanson S T, Zhu
Jinsong proposed the Unified Test Sequences (UTS) method. The
method involves four algorithms:

• Algorithm 1 generates test subsequences based on FSM for the
control part of the EFSM model, which has the same fault detec-
tion capability as the feature sequence.

86    ◾    Embedded Software System Testing

• Algorithm 2 analyzes the data part of the EFSM model using data
flow analysis techniques to obtain the dependencies between
EFSM state transitions, denoted as Transition Dependence
Graph (TDG), which gives the control and data dependencies
between transitions, the du-pair and def-clear paths of all vari-
ables, and by merging The TDG graph gives the control and data
dependencies between transitions, the du-pair and def-clear
paths for all variables, and by merging the concatenated paths, a
path through the data stream and containing all I/O dependen-
cies is generated.

• Algorithm 3 merges the first two algorithms to produce a subse-
quence covering all du-paths and all transformations.

• Algorithm 4 performs an executability check on the subsequence
to obtain the final EFSM test sequence. The executability check is
done by the Constraint Satisfaction Problem method and conver-
sion loop analysis. This method simplifies the EFSM, and the test
sequence executability check is performed after the test sequence
is generated.

Huang C M et al. proposed a test sequence generation method
for executable data streams and control streams based on the
EFSM model. In the data flow part, probes and tests contain
transition paths for variable definition use and output use. An
executable test sequence consists of three parts: (1) Executable
Switching Sequence (ECSS); (2) Executable DO path (EDO path)
or Executable Control Path (EC path), where EDO and EC paths
are obtained by extending the TEA tree with the ECSS tail state
as the root node; and (3) Executable fallback path (EBP path) is
obtained by extending the TEA tree with the EDO sequence tail
state as the root node. The DO path is defined as a definition-
output path, ECSS is the test prefix, and EBP is the test suffix. All
test sequences are executable in this method, but the method is
based on EFSM analysis of reachability, so there is a state explo-
sion problem. In addition, the method has to initialize the input
parameters to obtain executable test sequences, which makes
the resulting test sequences vary depending on the values of the
input parameters.

Embedded Software System Testing Techniques    ◾    87

3.2.4 Real-Time Extended Finite State Machine Model RT-EFSM

 1. RT-EFSM Characterization
Real-time embedded systems often exhibit state-based behavior

in whole or in part, so state-based modeling techniques can be used
when designing these systems. The modeling process above can lay the
foundation for further test design (test sequence and case generation).
State-based software testing techniques can fully verify the relation-
ship between events, actions, behaviors, states, and state transitions and
using this technique. It is possible to determine whether the state-based
system behavior meets the system requirements. The most common,
intuitive, and effective approach to modeling the behavior of state-
based real-time embedded systems is to use techniques based on FSMs.

From the current technical development, the traditional FSM and
EFSM-based testing methods cannot solve the temporal description
of state transition in real-time embedded software. They cannot well
describe the real-time embedded software real-time, concurrent,
cross-linked devices, and I/O interface complexity.

Given the obvious deficiencies of the traditional EFSM in describ-
ing the complexity and real-time nature of real-time embedded
software, it cannot meet the modeling requirements of real-time
embedded software. This book argues that the RT-EFSM must
address the following issues (as shown in Table 3.3).

 2. RT-EFSM Definition
Based on the above analysis, this book adopts the real-time EFSM

as the basis of real-time embedded software formal system testing,
based on the original EFSM six-tuple (Section 3.2.1), and extends it
into an eight-tuple.

TABLE 3.3 Issues that RT-EFSM Should Address

Description Description

Ability to completely and accurately
describe the behavior of real-time
embedded software.

Ability to describe complex state transition
relationships in real-time embedded
software.

Be able to describe the real-time,
concurrent characteristics of real-time

Ability to provide model validation methods
to ensure the correctness of the model.

embedded software.
Be able to describe the temporal
characteristics in real-time embedded
software state transition.

Provide assurance for subsequent test
sequences and automatic test case
generation.

88    ◾    Embedded Software System Testing

Definition 2-1

Real-time EFSM, which can be described as

RT-EFSM = <S*, S0, I, O, T, V, E, L>, where

• S*: the set of non-empty finite states and for s ∈S*, we have s = (entry,
exit, iact, itran, itevt, It), which
• ‘entry’ indicates the entry of state, preceding any internal actions

and transitions.
• ‘exit’ indicates the exit of the state, after all internal actions and

transitions.
• ‘iact’ indicates the internal action of the state.
• ‘itran’ indicates the internal transition of states, which does not

cause state entry and exit actions to occur.
• ‘itevt’ indicates the set of time-related events within the state.
• ‘It’ indicates the local clock inside the state.

• S0: the initial state of all states.
• I: the set of input events.
• O: the set of output events.
• T: the set of non-empty state transitions with T = < Head(t), I(t), C(t),

act, O(t), Tail(t) >, where
• Head(t) is the departure state of transition t.
• I(t) is the input event contained in the input event set I or is empty.
• C(t) is a precondition for the execution of transition t. It con-

tains variable constraints and time constraints and can be empty.
C t() = []V TC C, where VC denotes the variable constraint, TC
denotes the transition time constraint, and T tC S= , ,t tF I means
that the transition time is a tS fixed value and the transition tF
time obeys some distribution function, and tI denotes that the
transition time is some time interval.

• act is the operation performed during state transition.
• O(t) is the output event contained in the output event set O or is

empty.
• Tail(t) is the arrival state of transition t.

• V: the set of variables and V = IV,CV,OV , where IV represents the
set of input variables, OV represents the set of output variables, and
CV represents the set of environment variables. Variables that are
neither input nor output variables can be classified as environment
variables and can be null. The tester can control IV, CV and OV are

Embedded Software System Testing Techniques    ◾    89

Merge connection

Connect

Select point

Ordinary connection

FIGURE 3.6 Extended directed edges of RT-EFSM.

not controlled by the tester, and their values are determined by state
transition operation. IV and OV can contain both general variables
and temporal variables.

• E: the set of non-empty connected directed edges, which is an exten-
sion of the ordinary connections between states in the original EFSM,
i.e., with the addition of choice points, connections, and merged con-
nections, which can better describe the dynamic behavior of the sys-
tem, as shown in Figure 3.6.

• L: represents the global clock, used to record the time information of
system state transition.

Additional notes to the RT-EFSM definition.
• The precondition C(t) of transition execution in transition T is

decomposed into variable constraints and time constraints, which
can describe the state transition constraints more effectively; in
addition, the time constraint group T tC S= , ,t tF I of C(t), in three
cases, describes the time constraints used to migrate from one state
to another, i.e., fixed time, obeying the function distribution or time
interval, which can describe the state transition more effectively tem-
poral properties illustrated below.

• Fixed time means that the time used to perform this transition is
the same and is a fixed value, e.g., 50 clock cycles.

• Obey the function distribution interval means that although
each transition time is not the same, but presents a certain law,
that is, obey a certain function distribution, common uniform
distribution, exponential distribution, etc.

90    ◾    Embedded Software System Testing

• The interval time refers to a state transition time for a certain
range, i.e., [t1, t2], an open interval, a closed interval, or a half-
open, half-closed interval.

• E is for the complex state transition relationship of real-time embed-
ded software. This book extends the ordinary connection of the
original EFSM state transition by adding selection points, connec-
tions, and merge connections. A selection point is a connection that
executes its list of actions before moving on to the next transition
segment. This allows actions to be bound to the first transition seg-
ment to be executed before subsequent guardian expression assign-
ments; a join is one in which a number of highest points are used to
connect multiple transitions or split a transition into a set of con-
secutive transition segments. Regardless of the number of connected
transition segments, they are executed in a run-to-complete step; a
merge connection is also a connection in which multiple incoming
transitions can be combined to create an entry or state transition,
especially applicable when multiple transitions triggered by different
events share an action list and/or guardianship, or arrive together
at the same target state. The extension to connection edges makes
RT-EFSM more suitable for modeling real-time embedded systems,
reducing the number of test cases and increasing test efficiency when
automatically generating test cases.

• L represents the global clock, which is used to record the time
experienced by each system’s state from the beginning to the end.
Since there is a local clock for each state in the RT-EFSM model, the
local clock of each state can be obtained through the correspond-
ing calculation rules for the global clock value of the corresponding
dynamic behavior, which can ensure the controllability of the system
transition time and meet the real-time embedded system real-time
requirements.

The above analysis shows that the RT-EFSM real-time exten-
sion solution can effectively solve all the problems that must be
solved for real-time embedded software verification, as presented
in Table 3.3

 3. RT-EFSM model for UAV flight control system software
The following is an example of the simplified UAV flight control

system (FCS) software state transition to complete the RT-EFSM
modeling of this system software.

Embedded Software System Testing Techniques    ◾    91

(S0)

Instruction
Control
IC(S1)

Autonomous
Control
AC(S2)

evt02/[h<0x5,tc]

evt04/[tc] evt01/[(h==0xFA1)&&(v>100),tc]

Manual
Amendment

Control
MA(S3)

evt03/[tc]

evt02/[(0xFA1<h<0xFA5)&&(100<v<200),tc]

evt01/[h>0xFA1,tc]

evt04/[(v>200),tc]

evt02/[(h==0xFA5)&&(200=<v<=400),tc]

FIGURE 3.7 UAV flight control system software RT-EFSM model.

As a typical avionics real-time embedded software, the UAV
flight control software FCS is one of the most important parts of
the UAV flight control system. The quality and reliability of the
flight control software directly affects the safety and performance
of the flight control software the UAV operation. After analyzing
the FCS software documentation, Figure 3.7 gives the simplified
FCS software state schematic. The FCS software state mainly has
the power-on initialization state, Instruction Control (IC), Manual
Amendment (MA), Autonomous Control (AC), and other core
functions.

Let the initial power-up state be S0, the IC state be S1, the MA
state be S2, and the MA state be S3, and each state transition
event be “send state command” (denoted as evt01), “automatic
return” (denoted as evt02), “correction return” (evt03), and “auto-
matically enter autonomous control” (evt04), assuming that the
global constraint variables are altitude h and velocity v (changes
in altitude and velocity values can trigger state transition), and
the transition time constraint between each state is tc (tc < 5 ms),
and the transition between states can be described as follows:
T t= { }01 , ,t t10 111 , ,t t112 12 ,t t21 , , ,23 t32 and

92    ◾    Embedded Software System Testing

t01 =< S h0 0,evt01,[> >0xFA1,t Oc],act ,1 0()t S1 1,

t10 =< S H1 1,evt02,[> 0x5,t Oc],act ,0 1()t S0 0, >

t111 =< S h1 ,evt02, 0()xFA1 < < 0xFA5 & &()100 < <v t200 c  ,act11 , ,O t()11 S1 >

t112 =< S v1 1,evt04,[]()> >200 , ,t Oc act ,1 1()t S1 1,

t12 =< S t1 1,evt04, ,[]c act ,2 1O t()2 2,S >

t21 =< S h2 ,evt01,()== 0xFA1 & &()v t> 100 , ,c  act ,1 2O t()1 1,S >  2

t22 =< S h2 ,evt02,()== 0xFA5 & &()200 ≤ ≤v t400 , ,c  act ,2 2O t()2 2,S >2

t23 =< S h2 2,evt01, 0()> xFA5 t Oc  ,act 3 2, ,()t S3 3 >

t32 =< S t3 3,evt03, ,[]c act ,2 3O t()2 2,S >

Let M be the RT-EFSM model of the FCS, and then we have:

S S* ,= { }0 1S S, ,2 3S

I = { }evt01,evt02,evt03,evt04

T t= { }01 , ,t t10 111 , ,t t112 12 , ,t t21 23 ,t32

V x= { },tc

 4. RT-EFSM model validation algorithm
To ensure the correctness of the RT-EFSM model, the RT-EFSM

model needs to be validated to verify the consistency, determinism, and
reachability of the constructed model, where static deterministic valida-
tion ensures that the generated RT-EFSM is minimal, dynamic deter-
ministic validation ensures that the RT-EFSM is complete. Reachability
validation ensures that the RT-EFSM is strongly connected.

The RT-EFSM model verification algorithm is described below
with the RT-EFSM model of a UAV flight control system software.

 1. Reachability Verification
The unreachable state means that the RT-EFSM starts from the

initial state, and no sequence of events can migrate the system
state to a particular target state. The reachability of the RT-EFSM

Embedded Software System Testing Techniques    ◾    93

(S0)

Instruction
Control
IC(S1)

Autonomous
Control
AC(S2)

evt02/[h<0x5,tc]

evt04/[tc] evt01/[(h==0xFA1)&&(v>100),tc]

Manual
Amendment

Control
MA(S3)

evt03/[tc]

evt02/[(0xFA1<h<0xFA5)&&(100<v<200),tc]

evt01/[h>0xFA1,tc]

evt01/[(h>0xFA5),tc]

evt04/[(v>200),tc]

evt02/[(h==0xFA5)&&(200=<v<=400),tc]

unreachable
state(S4)

FIGURE 3.8 Example of RT-EFSM unreachable state.

means that there is no unreachable state in that RT-EFSM. An
example of an unreachable state can be given by mutating the
state in Figure 3.7 state S4 in Figure 3.8.

Unreachable states are redundant in an RT-EFSM, and these
states and the transition associated with them can be removed.
Check whether an RT-EFSM contains an unreachable state and if
so, eliminate the unreachable state, as shown in Table 3.4.

 2. Consistency Verification
The consistency of RT-EFSM means that there is no mutual

contradiction and redundancy in the state machine. When mod-
eling the state behavior of real-time embedded software based on
RT-EFSM, the range of values of each state variable and the exis-
tence of contradictions between state transitions should be con-
sidered. Therefore the consistency of RT-EFSM should include
the absence of equivalent states, state overlap, and the absence of
state transition conflicts (Figure 3.9).

After mutating the states of Figure 3.7 states, state overlap, and
the existence of state transition conflicts can be given. The state
states S3 and S4 in Figure 3.8 are equivalent states, and a model
that does not affect the semantic representation of RT-EFSM can
be obtained by merging the two states. Figure 3.10 overlaps, i.e.,
there is an overlap in the determination conditions for velocity
in the self-transition of states S1 and S2. Figure 3.11 shows state
transition conflict, where the determination of velocity in the

94    ◾    Embedded Software System Testing

TABLE 3.4 Algorithm of Reachability Verification of RT-EFSM Model

(S0)

Instruction
Control
IC(S1)

Autonomous
Control
AC(S2)

evt02/[h<0x5,tc]

evt04/[tc] evt01/[(h==0xFA1)&&(v>100),tc]

Manual
Amendment

Control
MA(S3)

evt03/[tc]

evt02/[(0xFA1<h<0xFA5)&&(100<v<200),tc]

evt01/[h>0xFA1,tc]

evt01/[(h>0xFA5),tc]

evt04/[(v>200),tc]

evt02/[(h==0xFA5)&&(200=<v<=400),tc]

Equivalent
State(S4)

evt03/[tc]evt01/[(h>0xFA5),tc]

Algorithm 3.1 Reachability verification of RT-EFSM model

*Input: RT-EFSM model M = S , 0 , S I , , O T , , , V E L
Output: RT-EFSM model after eliminating unreachable states

*M′ = ', 0S S , , I O, ′, T V , ′, E L
01. RemoveUnreachableState(Si, ti) {
02. Sa = {S0}, Sb = {S0};
03. while(Sb!= Φ) {
04. get Si from Sb;

 05.

for_each(ti∈T && Head(ti) == Si){
06. if(Tail(ti)∉Sa){
07. Sa = Sa ∪ Tail (ti);
08. Sb = Sb ∪ Tail(ti);
09. }
10. }
11. remove Si from Sb;
12. }
13. S*’ = Sa;
14. T’ = {t | Head(ti)∈S*’ ∩ Tail(ti)∈S*’};
15. return M’;
16. }

FIGURE 3.9 Example of RT-EFSM Equivalent States.

Embedded Software System Testing Techniques    ◾    95

(S0)

Instruction
Control
IC(S1)

Autonomous
Control
AC(S2)

evt02/[h<0x5,tc]

evt04/[tc] evt01/[(h==0xFA1)&&(v>100),tc]

Manual
Amendment

Control
MA(S3)

evt03/[tc]

evt02/[(0xFA1<h<0xFA5)&&(100<v<200),tc]

evt01/[h>0xFA1,tc]

evt01/[(h>0xFA5),tc]

evt04/[(v>200),tc]

evt02/[(h==0xFA5)&&(100<v<=400),tc]

FIGURE 3.10 Example of RT-EFSM state overlap.

(S0)

Instruction
Control
IC(S1)

Autonomous
Control
AC(S2)

evt02/[h<0x5,tc]

evt04/[tc] evt01/[(h==0xFA1)&&(v>100),tc]

Manual
Amendment

Control
MA(S3)

evt03/[tc]

evt02/[(0xFA1<h<0xFA5)&&(100<v<200),tc]

evt01/[h>0xFA1,tc]

evt01/[(h>0xFA5),tc]

evt04/[(v>200),tc]

evt02/[(h==0xFA5)&&(v==0),tc]

FIGURE 3.11 RT-EFSM state transition conflict example.

96    ◾    Embedded Software System Testing

self-transition of state S2 can never be true, then transition never
occurs, i.e., there is a state transition conflict.

 1. Elimination of equivalence states
Equivalent states are two states in an RT-EFSM that pro-

duce the same target state for arbitrary events and conditions,
indicating the existence of redundant states in that RT-EFSM.
The following conditions are satisfied to indicate the exis-
tence of equivalent states in that RT-EFSM.

 ∃ ∈S Si j*,∃ ∈S S*,t Ti i∈ ∈()S t, j jT S()

and the following conditions are met.

Tail()t ti j== Tail()∩ ⋅t Ii j== t I⋅ ∩t P⋅ = i j= ⋅t P ∩ ⋅t oi j== t o⋅ ∩t Oi j⋅ == ⋅t O

The algorithm to determine the presence or absence of
equivalent states in the RT-EFSM model and eliminate them
is shown in Table 3.5.

 3. Elimination of state transition conflict
A state transition conflict is a transition with a state as the

target state whose transition conditions conflict with the source
state itself, making it impossible for the transition conditions to
ever be satisfied, i.e., the transition cannot occur. A state tran-
sition conflict exists for RT-EFSMs that satisfy the following
conditions.

 ∃ ∈S Si i*,t T∈ ⋅i i[]()t P ∪ ⋅t Ii i∩ ⋅S V = ∅

The algorithm to check whether an RT-EFSM contains a state
transition conflict is shown in Table 3.6.

 5. Deterministic validation

 1. Static deterministic verification
The static determinism of RT-EFSM means that the

migrated target state is unique for a determined state transition

Embedded Software System Testing Techniques    ◾    97

TABLE 3.6 Algorithm of State Transition Conflict Elimination Algorithm in RT-EFSM
Model

Algorithm 3.3 State Transition Conflict Elimination Algorithm in RT-EFSM Model

*Input: RT-EFSM model M = S , 0 , S I , , O T , , V E, L
Output: Set of state transition conflict pairs STconf = { 1 , 1S t , 2 , S t2 , …, nS , tn , }
01. GetStateTransitionConflict{

 02.

for_each Si∈S*{
03. for_each(ti∈T && Head(ti) = Si){
04. if(((ti.P || ti.I) ∩ Si.V) = Φ)
05. STconf.add (<Si, ti>);
06. }
07. return STconf;
08. }
09. }

TABLE 3.5 Algorithm of Equivalent State Elimination Algorithm in RT-EFSM Model

Algorithm 3.2 Equivalent state elimination algorithm in RT-EFSM model

*Input: RT-EFSM model M = S , 0 , S I , , O T , , , V E L
Output: RT-EFSM model after eliminating equivalence states

*M = S ', 0 ,S I , ,O T ', , V E ', L
01. RemoveEquivalentState(Si, Sj, ti, tj){
02. M’ = M;
03. for_each Si, Sj∈S* {
04. T1 = {t | Head(t) = Si};
05. T2 = { t | Head(t) = Sj};
06. for_each ti∈T1
07. if (tj∈T2((Tail(ti) == Tail(tj) && (ti.I == tj.I)

&& (ti.P ==

 tj.P)
 && (ti.o == tj.o) && (ti.O == tj.O)))) {
08. remove tj from T2;
09. }
10. if(Φ == T2){
11. T3={ t | Head(t) = Sj || Tail(t) = Sj};
12. remove Sj from S*’;
13. remove T3 from T’;
14. }
15. }
16. return M’;
17. }

98    ◾    Embedded Software System Testing

condition at any one state, i.e., the following conditions should
be satisfied.

∃ ∈S Si j*,∃ ∈S S*,t Ti i∈ ∈()S t, ,j jT S() tij

=< S Ii i, ,()t Cj i()t Oj i,act j i, ,()t Sj j ,and tij = 1>

From the above description, it is clear that if the RT-EFSM
model is uncertain, it implies that the system can accomplish
unpredictable state transition under specific transition condi-
tions, which will undoubtedly make the system modeling a
hidden problem and lead to unpredictable execution results
(Figure 3.12).

After mutating the states of Figure 3.7 example of state uncer-
tainty can be given. The defective judgment of height in the
transition conditions of the states S2 and S3 in Figure 3.11 both
self-transition of state S2 and transition of S2 to S3 when h ==
0xFA5.

The RT-EFSM model static uncertainty determination algo-
rithm is shown in Table 3.7.

(S0)

Instruction
Control
IC(S1)

Autonomous
Control
AC(S2)

evt02/[h<0x5,tc]

evt04/[tc] evt01/[(h==0xFA1)&&(v>100),tc]

Manual
Amendment

Control
MA(S3)

evt03/[tc]

evt02/[(0xFA1<h<0xFA5)&&(100<v<200),tc]

evt01/[h>0xFA1,tc]

evt01/[(h>=0xFA5),tc]

evt04/[(v>200),tc]

evt02/[(h==0xFA5)&&(200=<v<=400),tc]

FIGURE 3.12 Example of RT-EFSM state uncertainty.

Embedded Software System Testing Techniques    ◾    99

 2. Dynamic Certainty
The RT-EFSM model for real-time embedded software pro-

posed in this book is the basis for subsequent model verifica-
tion. From the definition of RT-EFSM, it is known that V in the
RT-EFSM octet is a triple <IV, CV, OV>, where CV represents the
set of environment variables. The tester does not control it, and
the state transition operation determines its value, then when the
state transition in the RT-EFSM model contains preconditions.
The preconditions contain internal environment variables. Then
there is uncertainty in RT-EFSM, when the next state is related
to the current state and input and related to the internal envi-
ronment variables. This book calls this uncertainty dynamic
uncertainty.

For the dynamic uncertainty of RT-EFSM, the treatment is as
follows.

 1. For RT-EFSM with only input parameters in the precondi-
tion, the determinism of the model can be ensured by using
Algorithm 3.4.

 2. For the RT-EFSM model with input parameters and internal
environment variables in the precondition, the state decom-
position method can be used to eliminate the uncertainty of
state transition caused by the internal environment variables,

TABLE 3.7 Algorithm of RT-EFSM Static Uncertainty Determination

Algorithm 3.4 RT-EFSM Static Uncertainty Determination

*Input: RT-EFSM model M = S , 0 , S I , , O T , , V E, L
Output: Returns FALSE when M is indeterminate, otherwise TRUE
01. M_Certain(Si, ti, tj) {

 02.

for_each Si∈S*{
03. for_each ti, tj∈T(Head(ti) == Head(tj) = Si){
04. if((ti.I == tj.I) && (ti.P == tj.P)

&& (ti.o == tj.o)
 &&(ti.O == tj.O) && (Tail(ti)!= Tail(tj)))
05. return FALSE;
06. }
07. }
08. return TRUE;
09. }

100    ◾    Embedded Software System Testing

3.3.1 UML and OCL Basic Concepts and Techniques

i.e., to ensure that the transition from any state is not con-
strained by the internal environment variables. The specific
approach is to use the equivalence class division method to
divide the state transition constrained by internal environ-
ment variables into mutually independent sub-states. The
dynamic uncertainty handling algorithm of the RT-EFSM
model is shown in Table 3.8.

3.3 TEST CASE GENERATION BASED ON REAL-
TIME EXTENDED UML WITH RT-EFSM

 1. UML Concepts
The software crisis of the 1960s led directly to the birth of the ideas

and methods of software engineering. The creation and development
of object-oriented methods have greatly improved the efficiency and
quality of software development. The UML is a milestone in devel-
oping object-oriented technology and visual modeling technology,

TABLE 3.8 Dynamic Uncertainty Handling Algorithm for RT-EFSM Models

Algorithm 3.5 Dynamic Uncertainty Handling Algorithm for RT-EFSM Models
Let M be an RT-EFSM model, the set of states in M be S, i ∈S S , for t ∈i out ()T Si , out ()T Si

is the set of all transitions starting from Si . If there exists a precondition for ti and the
precondition contains internal environment variables. The precondition can be
decomposed into two sub-states and treated as follows.

Let S* be the set of states in the original RT-EFSM.
 1. Take any state Si from S*, and let the set of states starting from Si be out ()T Si .
 2. Examining the state transition in out ()T Si when the precondition is not empty, if

there is an internal environment variable for this precondition, Si can be
decomposed into two sub-states Si1 and Si2: Si1 is the sub-state when the precondition
is not equal to TRUE and Si2 is the sub-state when the precondition is equal to
TRUE.

 3. If there is a state transition in out ()T Si that has not been examined, and the
precondition is not empty, the state decomposition continues, i.e., if the value
interval of the internal environment variable in a sub-state contains the
precondition, the state decomposition continues according to the current
precondition.

* * 4. If all the state transitions in out ()T Si have been examined, let S = S − Si and fill in
the table of decomposed state transition executable paths with each sub-state and the
executable state transition from each sub-state. If S* = ∅, the disassembly is finished,
otherwise go to step 1.

Embedded Software System Testing Techniques    ◾    101

which is a language for specifying, visualizing, creating, and docu-
menting the components of software systems. It combines the basic
concepts and advantages of modeling methods such as Booch,
OOSE (Object-Oriented Software Engineering), and OMT (Object
Modeling Technology). It is widely used in various application areas
and widely supported by industry and other industries.

UML was accepted by the American Industrial Standardization
Organization (OMG) in 1997, and a standard version of UML was
released. After the continuous development of UML version 1.x, the
current version of UML has reached 2.x. UML is a standard lan-
guage for visual representation, detailed portrayal, construction,
and archiving of artifacts in software systems. It is also applicable
to business modeling and other non-software systems. Compared to
other modeling models, UML provides different modeling elements
to describe object-oriented software systems from different perspec-
tives and levels, reducing the complexity of modeling and providing
flexible expansion mechanisms due to the establishment of a model-
based architecture, allowing developers to customize their lead
version (Stereotype) to meet different domain requirements, thus
making it easy to incorporate new modeling concepts and elements.
UML can be used in all phases of software development and can be
used for requirements analysis, detailed design, and, more recently,
for software development and testing. UML facilitates communica-
tion between the various roles in the software development team and
provides an intuitive way to demonstrate to users what the software
will look like in the future, verify the consistency between the soft-
ware design and the requirements, and reduce problems during the
software development process.

UML is a semi-formal statute language in that it allows for a cer-
tain degree of ambiguity and does not fully require completeness.
However, suppose the modeler extends the UML appropriately in
terms of syntax and semantics. In that case, a complete, consistent,
and unambiguous specification can be fully constructed, which is
the basic requirement for automated testing.

 2. UML Basic Technology
The UML consists of three main components: the UML defini-

tion, the rules of the UML, and the public mechanisms of the UML.
The UML definition consists of two parts: the UML semantics and

102    ◾    Embedded Software System Testing

the UML representation. The UML semantics describes the precise
metamodel definition of the UML. The metamodel provides a simple,
consistent, and universal defining description of all elements of UML
in terms of syntax and semantics. The UML representation defines a
representation of UML notation that provides a standard for devel-
opers or development tools to use these graphical notations and text
syntax to model systems. Semantically it is an instance of the UML
metamodel that can be defined by five types of views (a total of nine
graphs). UML’s rules are used to integrate UML graphical notation
organically, and UML’s public mechanisms provide mechanisms and
functions for elaborating, modifying, and extending UML.

 1. UML semantics
The semantics of UML describes the precise metamodel defi-

nition of UML, which is defined in a four-level modeling concep-
tual framework, with different levels expressing different levels of
abstract semantics.

– The Meta-Meta-Model layer, which defines the language
of the UML Meta-model, is the basic structure of UML
meta-modeling architecture. Meta-Meta-Model layer ele-
ments, for example, MOF classes, MOF attributes, and MOF
associations.

– The Meta-Model layer, which consists of the basic elements
of UML, includes object-oriented and component-oriented
concepts, and each concept in this layer is an instance of the
Meta-Meta-Model. Examples of Meta-Model layer elements
are UML classes, UML state, and UML activities.

– The Model layer, each concept in this layer is an instance of a
concept in the Meta-Model layer, which makes up the UML
model. It is mainly responsible for defining the language that
describes the information domain. The models in this layer
are usually called the Class model or Type model. Examples
of model layer elements are: component diagrams and use
case diagrams for a bank ATM system.

– The User-Object layer, where all elements in this layer are
instances of the UML models. Each concept in this layer is

Embedded Software System Testing Techniques    ◾    103

an instance of the model layer and mainly describes a spe-
cific information domain. The models in this layer are usually
called object models or instance models. Examples of user
model layers are bank ATM systems.

UML defines, exchanges, stores, and shares metadata
through this metadata management framework. It recur-
sively defines semantic structures at each layer, resulting in a
more precise and formal language, and can be used to define
heavyweight and lightweight extension mechanisms.

 2. UML representation
UML representation is a visual representation of UML seman-

tics, a tool used to implement model systems, a graphical repre-
sentation of the model.

A software system, especially a complex software system,
needs to be described from multiple aspects, so there is the con-
cept of View, where different views describe different aspects
of the system from different perspectives. UML consists of five
types of views, each of which focuses on one aspect of the system.
These five views are related and interactive, and they can be used
to provide a comprehensive description of the software system.
UML provides nine diagrams (Diagram), which provide tools for
modeling different views of the system. These diagrams provide
powerful support for the whole process of developing a software
system from different application levels and different perspec-
tives. Different models can be created at different stages for dif-
ferent purposes.

– Use Case View: It describes the system’s behavior from the
perspective of external users through use cases for end-users,
analysts, and testers to observe and analyze, and mainly
includes Use Case Diagram.

– Static View: Includes Class Diagram, Object Diagram, and
Package Diagram. The Class Diagram describes the struc-
ture of classes in the system and the relationships between
classes. The Object Diagram is an instance of the Class
Diagram, and a Class Diagram can form multiple instances
of the Object Diagram. Package Diagram is used to describe

104    ◾    Embedded Software System Testing

the hierarchical structure of the system and is a collection of
multiple class diagrams forming a higher level unit.

– Behavior View: Describes the dynamic model of the system.
Includes State Chart Diagram and Activity Diagram. The State
Chart Diagram describes all possible states of a particular
object and the transitions between states; the Activity Diagram
describes the workflow and concurrent activities of the system.

– Interactive View: Describes the dynamic interactions between
objects. It includes Sequence Diagram and Collaborate Diagram.
The Sequence Diagram focuses on the time and sequence of
object interactions; the Collaborate Diagram focuses on the
static connections between the interacting objects.

– Implementation View: Describes some of the characteris-
tics of the system implementation. It includes Component
Diagram and Deployment Diagram. The Component
Diagram describes the physical structure of the code com-
ponents and the dependencies between the components; the
Configuration Diagram defines the physical architecture of
the software and hardware in the system.

 3. UML’s public mechanism
UML appends some information to diagrams through public

mechanisms often not represented by the basic model elements.
Commonly used public mechanisms are modification, note, and
specification description.

– Modification: Adding modifications to the model elements of
a diagram attaches a certain semantic meaning to the model
elements. It is convenient for the modeler to distinguish types
from instances. For example, when an element represents a
type, its name is shown in boldface. When the type is used to
represent an instance of its corresponding type, its name is
underlined, specifying the name of instance and type.

– Notes: To add some additional information to the model that
the model elements cannot represent, UML provides the abil-
ity for notes, which can be placed anywhere in any diagram
and can contain a wide variety of information as explanatory
or descriptive information about an element. Dashed lines are

Embedded Software System Testing Techniques    ◾    105

usually used to link notes containing information to elements
along the way.

– Specification Description: A model element contains many
properties that are represented as numeric values. A name
and a value represent a property, often also referred to as a
plus tag. The plus tag value is detailed with a type such as an
integer or string.

 4. UML extension mechanism
UML provides a standard language for describing software

blueprints. However, no single language can adequately represent
all models in all domains, such as real-time embedded systems.
Therefore, UML is designed to be open and can be extended in a
controlled manner. Extension mechanisms allow users to make
some general extensions without changing the basic modeling
language. UML extension mechanisms include conformational
stereotypes, tagged values, and constraints.

– Stereotype: A new model element is constructed on top of
an existing model. Stereotypes simply extend the semantics
but cannot change an already existing type or class structure.
Stereotypes can be thought of as special classes. They have
properties and operations but have special constraints on
their use with other elements.

– Tagged Value: It extends the features of UML construct blocks
by allowing new information to be added to the description of
an element. It consists of a pair of strings: a tag string and a
value string. The tag is some characters’ names to be recorded
by the modeler, while the value is the characteristic value of
the given element. For example, Student.name=Kate, where
name is the token and Kate is the value. The tag value can be
used to store any information about any element.

– Constraint: It extends the semantics of UML building blocks,
allowing the addition of new rules or modifying existing rules.
Constraints are semantic restrictions expressed as literal
expressions. Constraints can represent constraint relations
that UML representations cannot represent, and they can be
attached to table elements, dependencies, or annotations.

106    ◾    Embedded Software System Testing

 3. Object Constraint Language and Its Applications

 1. Introduction of Object Constraint Language (OCL) function
OCL is a language for expressing constraints imposed on model

elements. Ocl expressions specify rules in the form of conditions
and constraints attached to model elements. This includes expres-
sions specifying invariants or constraints attached to model ele-
ments, preconditions and postconditions attached to operations
and methods, and navigation between model elements. The main
functions of OCL can be summarized as semantic constraints
on models and querying of models. The detailed functions are
as follows.

– A detailed description of the constants in the class and the
types in the class model.

– Details of the type constants for prototype extensions
(Stereotype).

– Describe the preconditions and postconditions of operations
and methods.

– Description of the establishment condition (Guard Condition).

– Detailing the objectives of the message and activity (Set).

– Detailing the constraints of the operation.

– Details the semantic rules for the attributes of any UML
model expression.

 2. The syntax of OCL
The syntax of OCL is mainly divided into expressions, data

types, operations, model types, etc., which are described in the
following. An OCL expression consists of many expressions and
the corresponding type characteristics used. A context declara-
tion consists of the keyword context and the class name or opera-
tion name of the constraint. A constraint consists of a context
declaration and a list of expressions that follow the cured type
specified after it. Self keyword is used to indicate the context
instance. Among them, the curing types include:

– inv: <invariant> for constants, invariants.

– Pre: <precondition> indicates a precondition.

Embedded Software System Testing Techniques    ◾    107

– Post: <postcondition> indicates postcondition.

– Several common expressions are described below.

– Navigation expressions: OCL should represent starting from a
context object and getting other objects along the links to deter-
mine the required model elements. Since this process requires
traversing a part of this object network, the expressions that
represent these objects are navigation expressions. The basic
form of navigation is a link from one object to another.

– Package Context Expression.

Package Package::SubPackage
context X inv:
… invariant definition …
context X::operationName()

Pre:
… precondition definition …
Endpackage

– Operation body expressions.

Context Typename::operationName(param1:
Type1, …): Return Type
body: - -Some expressions

– Initial and extracted value expressions.

Context Typename::attributeName: Type
init: -- expression indicating the initial
value
context Typename::assocRoleName: Type
derive: -- expression extracting the value

– The OCL data types and operation names are shown in
Table 3.9.

The model types of OCL include abstract data types and concrete data
types, where the abstract data types are mainly collections; the concrete
data types are mainly sets, bags, and sequences.

108    ◾    Embedded Software System Testing

3.3.2 UML and Software Testing

The definition, general mechanism and extension mechanism of UML
were introduced earlier, and it can be seen that UML has been widely used
in industry and research fields. UML provides five types of views reflect-
ing various aspects of software system characteristics from different per-
spectives. It can be used as a modeling tool for analysis and design in the
software development process and to provide solutions for software test-
ing. For example, UML class diagrams can be used to assist in completing
unit tests; component diagrams and collaboration diagrams can reflect the
interfaces and invocation relationships of software components and the
dynamic cooperation relationships of objects and can be used for integra-
tion tests; use case diagrams and some dynamic diagrams (state diagrams,
activity diagrams, sequence diagrams, etc.) can analyze the functions and
dynamic behaviors of the system, and can be used for system testing.

From the perspective of software testing, the UML model is an impor-
tant basis for obtaining test information. Generating test cases through
automatic analysis of the UML model can alleviate much testing work and
greatly improve testing efficiency and quality. Due to its complexity, high
reliability, and real-time characteristics, embedded software presents new
challenges to testing technology. The introduction of UML in the testing
of embedded software is the current trend of research and development.

 1. UML-based software testing research status
The current research on generating test cases from UML analysis

models (use case diagrams, class diagrams, sequence diagrams, coop-
eration diagrams) is mostly at the theoretical stage. Early research
was done by converting or expanding these UML analysis models
into other formal descriptions (e.g., FSM, EFSM) and then extracting
test cases from them, such as UML state diagrams, activity diagrams,

TABLE 3.9 OCL Data Type and Operation

Basic Type Value Operation

Boolean True, false And, or, nor, not, implies, if-then-else
Integer 1, −10, 1002,…... *, +, −, /, abs(), round(), floor()
Real 3.14, −2.6, …... *, +, −, /, floor()
String ‘just in time’ ToUpper(), Size(), Concat()

Embedded Software System Testing Techniques    ◾    109

use case diagrams, sequence diagrams, and test cases based on mul-
tiple UML diagrams combined testing methods.

 2. The advantages of UML-based software testing
Through the analysis of the above research on the application of

various UML models in software testing, it can be seen that UML
models have the following advantages in testing.

• Generality: UML, as a standard modeling language, has broad
applicability and is widely adopted by the software development
community to guide all phases of software engineering and is
supported by many commercially available tools.

• Powerful descriptive capabilities: UML provides various views
and models that enable modelers to describe the structure
and behavior of software systems from different levels and
perspectives.

• Reusability: UML models support the modeling of information
about various aspects of the system in all phases of software
development. These models facilitate the development of soft-
ware and guide the design of tests, avoiding the need to construct
models specifically for testing, enabling the reuse of models, and
integrating the testing of software with the development process.

• Iteratability: Testing activities can be started at the software
requirements stage, and the established testing model can be
continuously modified and refined as the software design activi-
ties are refined. This iterative process allows for early detection
of defects in software requirements. It enables testing activities
and development activities to be carried out in parallel, allowing
testing to be carried out throughout the software development
process.

• Powerful management capabilities: UML’s view hierarchy mecha-
nism and package mechanism have powerful management capa-
bilities, and these mechanisms solve the problem of state space
explosion to some extent.

• Solid theoretical foundation: These foundations have laid the
foundation for subsequent related research and provided good
support.

110    ◾    Embedded Software System Testing

 3. The disadvantages of UML-based software testing
Despite all of these advantages, UML does not apply to modeling

all details in all domains, and software testing based on UML models
often suffers from the following disadvantages.

• When modeling systems in the real-time embedded domain,
the lack of temporal characteristics of the description lacks the
support of a well-defined syntax and semantics and therefore
requires real-time extensions to be used for real-time embedded
software testing.

• There are many UML models, which models need to be selected
for modeling before testing, how to perform software functional
division, and model construction need some pre-exploration and
research.

3.3.3 UML Real-Time Extensions

Although UML provides powerful description capability and is popular in
the industry, there are some shortcomings in ventide real-time embedded
software testing, such as the lack of powerful description means for real-
time, unambiguity, and other characteristics of embedded software, which
are prone to ambiguity and will not be able to meet the requirements of
real-time embedded software testing. This section will use the extension
mechanism of UML to complete the real-time extension of UML in terms
of stereotype, tagged values, and constraints.

 1. Real-time extension of UML state diagram
Based on the Harel classical state diagram, UML state diagrams

are an extension of the FSM model that emphasizes modeling com-
plex real-time systems while providing descriptions of mechanisms
such as hierarchy, concurrency, and broadcasting. They are increas-
ingly used in the field of real-time embedded software testing. UML
state diagrams can be expressed as follows

UML state diagram = FSM + nesting + concurrency + broadcast
mechanism.

In view of the fact that FSM and EFSM related theories have
made considerable research results and have been successfully
applied to telecommunications, networks, embedded systems, and
other fields, these researches provide good support for real-time

Embedded Software System Testing Techniques    ◾    111

embedded software testing techniques based on UML state diagrams
and RT-EFSM, so this section uses real-time extensions based on
UML state diagrams to complete the modeling process of real-time
embedded software systems. The real-time extensions of UML state
diagrams are mainly developed from three aspects: improvement
and extension of states, improvement, and extension of state transi-
tions, and introduction of time constraint mechanism.

 1. Improvement and extension of the state
In UML representation, the state represents a condition or situ-

ation of the object in its lifetime, and the state behavior describes
the process of the object activity. In real-time embedded software
test modeling, the state of the system under test in the lifetime
must be finite. The temporal characteristics of the system behav-
ior in a state are also determined.

UML state diagrams consist of transitions between states, and
in general, the states are classified as follows.

• Simple states, states without hierarchy, compound, and
concurrency.

• Compound states refer to a state that has several states nested
inside it, which means the state diagram contains hierarchi-
cal relationships. The states containing other states are called
super-states, and the nested states are sub-states.

• Pseudo states, a special representation of an abstract state,
such as the initial and termination states, are pseudo-states.

In the process of modeling the dynamic behavior of tests based
on UML state diagrams, in addition to the initial pseudo-state
and termination pseudo-state, this book improves and extends
the state in UML state diagram modeling to better describe
the system under test, mainly by adding some pseudo-states to
define and describe the dynamic behavior of real-time embedded
software, Table 3.10 gives the functions of the extended pseudo-
states in real-time embedded software testing description.

 2. Improvement and extension of state transition
In the dynamic behavior description of real-time embedded

systems using UML state diagrams, traversal along the state

112    ◾    Embedded Software System Testing

diagram is accomplished by receiving events and performing
state transition. The state transition is triggered by the reception
of an event, while in states where an outgoing transition is speci-
fied, the transition is triggered by that event.

In real-time embedded software testing, the types of transition
in UML state diagrams are extended to the following four types.

• Self-transition: both the source and target states are the same
state.

• Internal transition: internal activity of a state, where the state
does not change overall.

• Completion of the transition: transition automatically trig-
gered by the completion of an action within a state.

• Compound transition: a transition that is triggered by a com-
bination of simple transition through branching, determina-
tion, concurrency, etc. together.

TABLE 3.10 Pseudo States After UML State Extensions

Pseudo State Description

Branch pseudo state A set of possible target states, at most one “or state” will be
activated in the guardianship condition, which is a
combination of guardianship on existing transition segments

Connection pseudo
state

Linking multiple state transitions or splitting a transition into a
set of consecutive transition segments

Merge connection
pseudo state

A type of connected state where multiple incoming transitions
can be combined to create an entry or state transition,
especially when multiple transitions triggered by different
events share an action list and/or guardianship

Select pseudo state A connection that executes a list of its actions before moving on
to the next transition. This state allows actions to be bound to
the first conversion segment so that they can be executed
before subsequent guardian expressions are assigned

AND state UML state diagrams use “and states” to represent independent
states that can be active concurrently with other states

OR status UML state diagrams use “or states” to represent independent
states that cannot be concurrently active with other states

Broadcast Events All peer states receive the same event at the same time
Dissemination events The result of a transformation performed in a “with state” or

object that is sent out
IS_IN() operator The argument in parentheses is a state, indicating that the

system is in that state when it is used

Embedded Software System Testing Techniques    ◾    113

State transition generally consists of trigger events, param-
eters, guardians, and actions, etc. State transition can be
defined as

event-trigger(parameters)[guard]/action list

Including:

• Event-trigger is the event that triggers the conversion, which,
together with the list of parameters, constitutes the identifica-
tion of the conversion event. If the transition is not marked
with an event that triggers the conversion. It means that the
transition is carried out automatically.

• Guard is a Boolean expression that indicates the conditions
that must be met to trigger state transition, and its value must
be TRUE for the transition to be performed. The combina-
tion of OCL and UML state diagram will be used in real-time
embedded software testing to describe the constraints during
the execution of the dynamic behavior of the system under
test, i.e., OCL is used to describe the preconditions, guardian
conditions, variables, and time constraints in the state dia-
gram transitions.

• The action list is executed as a result of ongoing transforma-
tions that will act on certain objects, and the execution of the
actions is atomic and non-interruptible. The local clock lt in
the real-time extended state will change in response to trigger
the transition of entry and exit points.

 3. Introduction of time constraint mechanism
In real-time embedded software testing, there are gener-

ally time-related events, that is, the timing of events have strict
requirements, and these can not be reflected in the original UML
state diagram, so it is necessary to provide a time constraint
description mechanism by adding OCL constraints, mainly
including the following.

 1. Introduction of clock variables. The behavior of real-time
embedded software is closely related to time, so clocks are
needed to record the occurrence and end of state transition.
Since the state diagram is described in layers, in order to

114    ◾    Embedded Software System Testing

eetatattss ii

ttII//yyrrtntnee i i 0=0=

Event()[gt==1000]

FIGURE 3.13 Global clock and state local clock.

reduce the difficulty of modeling and the coupling between
different state diagrams, it is necessary to introduce a global
system clock gt and local clocks within each state lti. The
global clock gt is used to record the time experienced by the
main state diagram from the beginning to the end. The local
clock is used to record the time experienced by the transi-
tion between each sub-state. The sub-state local clock can
be obtained by the corresponding calculation rules for the
global clock value of the corresponding dynamic behavior. As
shown in Figure 3.13, when an event occurs, and the system
clock reaches 1000, the statei is migrated, and the initializa-
tion of the local clock lti within the state is performed first
after activating the state statei.

In particular, it is important to note that in some cases, the
self-transition of states does not require resetting the local clock
of the current state. At the same time, since external transitions
all activate entry activities, this can lead to resetting the local
clock within the state. The solution is to use self-transition. Since
there is no target state for self-transition, the transition does not
change the current state, and even if there is an action for transi-
tion, it does not activate the entry action, thus ensuring that the
local clock is not reset.

 2. Timeout event constraint means that a state can only be main-
tained for a specified time, and after the timeout, the system
migrates to another state. In the state transition shown in
Figure 3.14 in state1 during the timeout time1, and automati-
cally migrates to state2 after the timeout.

 3. Operation time-delay constraint means that the opera-
tions attached to the state transition need to be delayed for
a period of time. In the state transition shown in Figure 3.15
SendData() operation should be delayed for a delay time
before execution.

Embedded Software System Testing Techniques    ◾    115

{gt<=time1}

state1 state2

{gt>time1}

FIGURE 3.14 Timeout event constraint.

state1 state2

{Es.sendData(delaytime,...}

FIGURE 3.15 Operation time constraints.

state1 state2

{800<=gt<=1000}

FIGURE 3.16 Example diagram of transition subject to clock constraints.

 4. Time-constrained transition means that state transition can
only occur in a certain time period. In the state transition
shown in Figure 3.16 corresponding transition is allowed to
occur within 800–1000 clock cycles.

 5. Periodic event constraint means that certain operations are
executed periodically, or events and transitions occur period-
ically in the state diagram. For example, in the state transition
shown in Figure 3.17 after the system clock is greater than
time1, state2 is automatically migrated to state1 every period
time, which occurs x times.

116    ◾    Embedded Software System Testing

{gt<=time1}

state1 state2

{Es.sendData(period,x}

FIGURE 3.17 Periodic event constraint transition.

{gt<=time1}

event1 state 2
state1

entry/It2 =0

Feedback[a<=It2 <=b]

state3

FIGURE 3.18 Feedback time constraint in state transition.

 6. Temporal feedback behavior. Real-time embedded systems
often have a time feedback problem to external excitation.
They must respond within a certain time constraint, so this
book gives a way to describe the time feedback behavior. As in
the state transition shown in Figure 3.18, feedback time con-
straint in state transition after state2 receives the event1; the
feedback time (local clock within the state lt2) must satisfy the
time constraint: a ≤ ≤lt2 b.

Based on the above real-time extension scheme, example of
avionics real-time embedded system model based on real-time
extended UML gives a model example of an avionics real-time
embedded system – inertial/satellite combined navigation sys-
tem based on the real-time extension UML (Figure 3.19).

Embedded Software System Testing Techniques    ◾    117

{pre: {pre:

self.WOW==1; self.power==GC;

IS_IN(ATT)} self.t(GC) {pre:>130ms}
self.power==CAL;

{pre: self.t(GC)>130ms

S IS_IN(FAST)} self.NAV==TRUE}&&

0 Compass Store heading {post: gt>150ms}

alignment (S1)
alignment

(S2) S8
Calibration Integrated navigation

(S (S4) 5)

{pre:

gt {130=<gt<=2000}
<=130ms} Store heading

alignment {pre:

self.GPS {pre:
Pure inertial (S3) ==FALSE;

GPS navigation self.INEself.WOW==0} navigation ==TRUE;

(S) 7) slef.WOW(S ==0}
6

{pre:

self.GPS {pre:
==TRUE;

self.INEslef.WOW ==FALSE;
==0}

slef.WOW==0}

FIGURE 3.19 Example of avionics real-time embedded system model based on
real-time extended UML.

 2. UML class diagram extensions
The class diagram is the most commonly used diagram in object-

oriented system modeling, which shows a set of classes, interfaces,
collaborations, and relationships. In real-time embedded software
testing requirements analysis, class diagrams represent the relation-
ships between objects in the system and mainly represent the static
structure of the software system. The operations and attributes in the
class diagram provide the necessary information for transition in the
state diagram. They are an indispensable part of the dynamic model-
ing of the state diagram.

The extension of the UML class diagram mainly completes the static
behavior modeling of real-time embedded software. It adds some ste-
reotypes closely related to the embedded system when extending the
class diagram. For real-time embedded software testing, the class dia-
gram extension scheme follows the following principles.

• No need to add basic model elements to UML. Semantic and lexi-
cal extensions to the original UML model elements.

• The extended stereotypes apply to most real-time embedded sys-
tems and allow for a comprehensive representation of the struc-
tural characteristics of real-time systems.

The extension of the class diagram in real-time embedded soft-
ware testing is described as follows:

• Add the stereotypes <<EQUIPMENT>>, which is used to describe
the real-time embedded device. Real-time embedded equipment

118    ◾    Embedded Software System Testing

Atmospheric

machine system

simulation model

mission machine

system

simulation model

flight control

system

simulation

model

display control

system

simulation model

data transmission

system

simulation model . . .

Inertial
navigation

system
(real device)

External storage

system

simulation model

Avionics system closed loop simulation

FIGURE 3.20 Schematic diagram of closed-loop simulation of avionics system.

is the object of the system under test and its surrounding cross-
linked equipment. In the real-time embedded software simula-
tion test, the simulation model of the cross-linked equipment
around the system under test should be constructed according
to the system interface control document (ICD), and in the test
process, sending and receiving test data during the test in the
timing sequence required by the ICD through the test simulation
model. Only in this way can we ensure that the system’s operat-
ing environment under test is consistent with the actual oper-
ating environment to complete a realistic real-time, closed-loop,
non-intrusive system testing. As shown in Figure 3.20, schematic
diagram of closed-loop simulation of avionics system, if the avi-
onics system’s inertial guidance system is the system being tested,

Embedded Software System Testing Techniques    ◾    119

the surrounding cross-linked equipment, such as flight control
system, mission machine system, display control system, atmo-
spheric data computer system, etc. cannot all use real equip-
ment to build a complete closed-loop cross-linked system, so the
device simulation should be used to achieve, that is, in the real-
time embedded software system testing environment construc-
tion, only the system under test is the real equipment. The other
devices cross-linked with the system under test are replaced by
simulation models.

• The stereotypes <<IODATAVAR>> and <<BLOCK>> are added
to describe the type of data transfer between real-time embedded
devices. Real-time embedded systems communicate with each
other through I/O and data buses, and there are various formats
of data protocols, and the bus data is mainly characterized by
“block data”. To better describe these bus data, the <<BLOCK>>
is defined to represent the block data types for communication
between real-time embedded systems and their cross-linked
devices, such as MIL-STD-1553B, ARINC429, RS232, RS422,
AD/DA, DI/DO, and CAN. Figures 3.21–3.23 give the structure
of command word, status word, and data word in the bus mes-
sage of MIL-STD-1553B, respectively.

• Add the stereotypes <<IOLINK>>, which is used to describe the
type of I/O bus connection between real-time embedded devices.
The devices used to connect real-time embedded systems, and
their surrounding cross-linked devices can be divided into two
types of connection relationships: unidirectional and bidirec-
tional. Since multiple connections may exist between real-time
embedded devices, multiple associations can be established
between objects, with different associations indicating different

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 5 5 15

Synchronization header RT address transceiver bit sub address data word count parity bit

FIGURE 3.21 MIL-STD-1553B bus command word.

120    ◾    Embedded Software System Testing

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 15

Synchronization header RT address message error
reserve

Broadcast command receiving

1 1 3 1 1 1 1 1

detection
service request

Sub address flag
Dynamic bus control

terminal flag

prrity

busy

FIGURE 3.22 MIL-STD-1553B bus status word.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

data parity bitSynchronization header

16

FIGURE 3.23 MIL-STD-1553B bus data word.

types of connection. To indicate the type of data protocol of the
connection, the above characteristics are represented by adding
tagged values.

IOLINK.TransType = value // indicates the data type of the
connection

IOLINK.SrcEqpmt = value // indicates the connected source
device

IOLINK.DesEqpmt = value // indicates the connected target
device

Based on the above extended ideas, a static modeling frame-
work for real-time embedded software testing is given Figure 3.24
Static modeling framework for

The figure above shows that the following classes are included
in the static modeling framework for real-time embedded
systems.

• IOVarInfo (belongs to the stereotype IODATAVAR) is an
I/O interface data class that belongs to a real-time embedded

Embedded Software System Testing Techniques    ◾    121

device, which can derive two subclasses according to the clas-
sification of interface data types: NonBlockType and BlockType,
where BlockType belongs to the stereotype <<Block>>, indi-
cates the block data type; NonBlockType indicates other com-
mon non-block data types, such as double, char, float, int, and
long. The BlockType class can also inherit subclasses such as
1553B, ARINC429, and RS422, according to the typical real-
time embedded software data transfer protocol type. From the
perspective of data transmission, a data variable should include
the following characteristics: data source, data destination, data
type, data value, data timestamp, and transmission medium.
Since different software under test will have different require-
ments for interface data, including I/O type and data format,
take 1553B interface as an example. As shown in Table 3.11,
a complete 1553B block information includes the following.
Hence, 1553B class needs to add the corresponding attributes to
represent this information.

>>>>TTNNEEMMPIPIUUQQE<< E<<
11ttnenemmppiiuuqqEE

>>>>TTNNEEMMPIPIUUQQEE<<<<
22ttnenemmppiiuuqqEE

>>>>RRAAVVAATTAADDOIOI<<<<
ooffnniirraaVVOIOI

>>>>TTNNEEMMPIPIUUQQEE<<<<
TRTR ttnenemmppiiuuqqEE--

*

1

VarID:Integer
VartType:String

VarLength:Integer
...

InitVarValue()
SetDataValue()
GetDataValue()

IsSUT:BOOL
Eqpmt_ID:String
VAR1:IOVarInfo
VAR2:IOVarInfo
VARn:IOVarInfo

...

>>>>TTNNEEMMPIPIUUQQEE<<<<
... ...

InitEqpmt()
StartEqpmt()

SuspendEqpmt()
RestartEqpment()

StopEqpmt()
AddVar()

DeleteVar()
...

eeppyyTTkkccoollBBnnooNN

>>>>KKCCOOLLBB<<<<
eeppyyTTkkccoollBB

b3551 b3551
>>>>KKCCOOLLBB<<<<

>>>>KKCCOOLLBB<<<<
222244SSRR

>>>>KKCCOOLLBB<<<<
992244CCNINIRRAA

... ...
>>>>KKCCOOLLBB<<<<

>>>>KKNINILLOIOI<<<<
ssuuBBOIOI

IOType:String
Src:RT-Equipment
Des:TR-Equipment

...

FIGURE 3.24  Static modeling framework for real-time embedded systems.

122    ◾    Embedded Software System Testing

• RT-Equipment (belonging to the stereotype EQUIPMENT) is a
generic real-time embedded device class containing the proper-
ties and operations shown in Table 3.12.

• IOBus (belonging to the stereotype <<IOLink>>), which indicates
the bus connection relationship between devices, can be divided
into unidirectional connection and bidirectional connection.

 3. A Study of Real-Time Extended UML Formal Semantics
The semantics of the state diagram given in the UML standard

document is semi-formal and mainly uses natural language com-
bined with OCL to describe the state diagram, which leads to ambi-
guity and uncertainty and is not conducive to the conversion between
UML state diagram and FSM models. To accurately and automati-
cally convert real-time extended UML state diagrams to RT-EFSM
models, this section investigates the formal semantics of state dia-
grams in conjunction with the UML real-time extended scheme. It
lays the foundation for the subsequent conversion of state diagrams
to RT-EFSM.

TABLE 3.11 1553B Bus Interface Properties

Name Properties Meaning

Variable int Variable identification
Source string Source model
RT_Source int Source model RT value
Target string Target model
RT_Target Int Target model RT value
SA string Sub address
Interface string Bus type
PRI string Priority
Coment string Note information
TransferType string Transmission type
Period int Periodic value
AllowDelay int Maximum latency
WriteProtect string Rewriting allows
SystermCondition string System status
InterruptAllow string Interrupts allowed
DataLeght int Data item word length
DataItem string The 0th data item
… … …

Embedded Software System Testing Techniques    ◾    123

Definition 3.1 Real-time extended UML state
diagram RT-SD=(ρ θ, tp, , gt), where.

• ρ : 2S*


S*
 is the state refinement function, which is used to describe

the hierarchical relationship between states. Let ρ()s be the set of
sub-states of a state s ∈S*, and the 2S*

 power set represents all sub-
states of S*. Let ρ* ()s denote ∀ ∈s S*, both have ρ()s S∈ *, i.e., ρ* ()s
defines the set of states S* contained itself and all its sub-states.

• tp : S*
{smp, AND, OR, psdo} is a function of the state type, where

• tp (s) = smp indicates s a simple state and ρ ∅()s ≠ ;
• tp (s) = AND indicates s the AND state.
• tp (s) = OR indicates s the OR state.
• tp (s) = psdo indicates s a pseudo state.

• θ : 2S*


S*
 is the default function, θ ()s defining the default sub-state

contained within s ∈S, then we have

TABLE 3.12 RT-Equipment Properties

Classification Explanation Type Description

Property IsSUT BOOL Whether it is the system under test,
otherwise it is the cross-linked equipment
of SUT

Eqpmt_ID Integer Unique device identification
VAR1…VARn Variable Inter-device communication interface

variables are used to store the interface
data. The variable types can be classified
as complex data type <<BLOCK>> or
general data type, and the value range of
the variables is indicated by constraints

Operation InitEqpmt() BOOL Initialize the device, return whether the
initialization is successful

StartEqpmt() VOID Start the device running and start
receiving or sending data

SuspdEqpmt() VOID Hanging devices to wait for specific
conditions or messages

ReStartEqpmt() VOID Restarting equipment
StopEqpmt() VOID Stop the device
AddVar() VOID Adding variables
Delete() VOID Delete Variables
… … …

124    ◾    Embedded Software System Testing

 θ ρ()s S= ≠ () ∅ ∧ () = OR
 θ ()s =

def s tp s

 θ ρ()s s= ∅ () = ∅ ∧ =tp AN ()s D

• gt is the global clock of the system, which is the timer from the start
to the end of the system. When state transition occurs, the local clock
lt is reset to 0 at the entrance of each state, and gt is incremented at
the exit according to the placement of lt. See the definition of tran-
sition structure and time processing method later for the specific
algorithm.

Definition 3.2

A parent state π : S S* *
 is a direct parent state of ∀ ∈s S*. Let s′ = π()s ,

then s be the direct parent state of s ', i.e., we have ∀ ∈s sρ()′ ⇒ s s′ = π().
According to the above definition, then the uniqueness of the root
node can be expressed as

 ∀ ∈s S* *, ∃s S′ ∈ , tp()s s′ = ∈psdo, ρ* ()s s′ ⇒ ′ = root.

The uniqueness of the parent state of a non-root node can be
expressed as

 ∀ ∈s S* , s s≠ ∃root, ∈ =*
1 2, ,s S .s s1 2π ∧() s s= π() ⇒ =s s1 2

Definition 3.3 Transition structure

The order src :T S 

* , evt :T Tevt, grd : g rd, act : aT ct,
trgt :T S

* indicates the source state, trigger event, guardian con-
dition, action, and target state of the transition ∀ ∈t T , respectively.
Then for the transition:

evt g[]rd /act

 s1 → s2

There are

Embedded Software System Testing Techniques    ◾    125

 src(t s) ,= =1 evt(t t) evt, grd() = =grd, act(t t) act, trgt() = s2

The global clock gt and the local clock lt change at this point as
follows.

 ∆ =t slt()2 1− =lt()s t, gt gt + ∆

Definition 3.4 State lattice
*

Define conf : S 22s
 is a state pattern function, then for ∀ ∈s S* ,

∃ ∈root S* is the root state, the pattern C s∈conf (), satisfies:

root ∈c

∀ ∈s c : tp O()s s= ⇒R :()∃ ′ ∈ρ()s s′ ∈C

 ∀ ∈s c : tp A()s s= ⇒ND ()∀ ′ ∈ρ()s s: ′ ∈C

Definition 3.5 Active states

In the real-time extended UML state diagram, when the sys-
tem state is migrated from s1 to s2, then s2 becomes inactive. Let
actv : S*

 { }TRUE, FALSE be the state active function, then for
∀ ∈s S*, when actv T()s = RUE means that s is in the active state, when
actv F()s = ALSE means that s is in the inactive state.

Based on the above definition, it is clear that there are

 1. When the combined state s is AND, all sub-states in are active and
can be expressed as

 ∃ ∈s s S s* *
1 2, , ,∀ ∈S s tp O() = ⊆R, ,{ }s s1 2 ρ()s

 then there are

126    ◾    Embedded Software System Testing

 actv T()s s1 2= ∨RUE actv T() = RUE

 2. When the combined state s is OR, only one sub-state in s is active,
which can be expressed as

 ∃ ∈s s1 2, ,S s* * ,∀ ∈S s tp A() = ⊆ND, { }s s1 2, ρ()s

 then there are

 actv T()s s1 2= ∧RUE actv T() = RUE

Definition 3.6 Transition Enable

When the following conditions are met:

• The source state of the transition is active
• Trigger conditions for transition meet current events
• The guardianship condition for transition is TRUE.

Then a transition in a state pattern is enabled. If we make
enb : CT T { }RUE, FALSE is the transition enable function and we
make cur _ evt the current event, we have

actv s()rc()ct = ∧TRUE evt c()t c= ∧ur _evt grd c()t

= ⇔TRUE enb c()t T= RUE

Definition 3.7 Transition Conflict

Define conflict ,()t ti j , c to indicate the transition ti j,t exit from state
pattern c The transition conflict. When there are multiple transitions
enabled simultaneously in a state pattern, these transitions must
conflict with other transitions and can be expressed as

conflict ,()t ti j , ec ⇔ =nb()cti jTRUE, enb c()t

= ≠TRUE, cti jct , sec c()t si = rc()ctj

Embedded Software System Testing Techniques    ◾    127

Definition 3.8 Transition priority

For ∀ ∈t ti j, T , let prior ,()t ti j denote the state transition priority
function, and if prior ,()t ti j = TRUE, denote the priority of ti is higher
than t j. Then we have

• If si is a sub-state of the s j and transition ti j,t originate from si j,s
respectively, then obviously ti must have high priority, i.e.,

 si j∈ ⇒ρ* ()s tprior ,()i jt

• If si j,s do not belong to the same state pattern and the transition ti j,t
originate from si j,s , respectively, then there can be no transition con-
flict in ti j,t , and there is no priority distinction, i.e.,

 ¬∃ ∈()s ci i ∧ ∈s cj j ⇒ ¬∃prior ,()t ti j

Definition 3.9 Transition connection

For ∀ ∈t ti j, ,T t tp s()rc()j = psdo, and then let ti j↔ t denote the
transition ti and the default transition t j to be connected, i.e.,

 ∃ ∈t ti j, ,T ti j↔ ⇒t ttrgt()i j= trgt()t

Definition 3.10 Transition division

For ti j,t T∈ , let t = ⊗t ti j denote the transition t is divided into tran-
sition ti and transition tj, and then transition ti and tj transition are
divided, i.e.,

 ∃ ∈t T , t t= ⊗i jt t⇒ ∈i jT t, ∈T

128    ◾    Embedded Software System Testing

3.3.4 T est Case Generation Process Based on Real-Time
Extended UML and RT-EFSM

 1. Test case generation process
With the continuous development of UML ventide techniques

and formal methods, combining UML with traditional formal
methods has become one of the most important aspects of research
in the field of real-time embedded software testing: on the one hand,
as a de facto industry standard, UML has gained widespread sup-
port since its introduction, and many large companies have joined
its camp and launched UML-enabled CASE tools, such as Rose
family of tools from Rational, Rhapsody from iLogix. On the other
hand, the formal approach enhances the accuracy and consistency
of testing. It improves the automation and efficiency of testing due
to its ability to eliminate the duality in testing. In summary, com-
bining UML with formal methods is a hot research topic in software
testing.

Real-time embedded software system testing is based on the rel-
evant documents of the software under test, mainly including soft-
ware mission statement, software requirement specification, interface
control document (ICD), and user manual. Through analyzing the
structure, function, interface, and state information of the software
under test (SUT), clarifying the input and output of the system and
its mapping relationship, we can establish static and dynamic models
of the SUT and describe the structure and behavior of the system
respectively. The test cases are automatically generated by combining
the test case generation methods.

The ventide principle of the test case generation process based on
real-time extended UML and RT-EFSM is shown in Figure 3.25

The test case generation process based on real-time extended UML
with RT-EFSM is as follows.

 1. The software under test document analysis: the development unit
to provide the real-time embedded software under test docu-
ments, such as software development tasks, requirements specifi-
cations, ICD, user manuals, and POP manuals, in the document
analysis process should be fully communicated with the software
developers to obtain relevant information about the software
(including functional and non-functional features).

Embedded Software System Testing Techniques    ◾    129

The

software

under test

document

analysis

 Static modeling (extended

UML class diagram)

Dynamic modeling

(extended UML state

diagrams)

UML state diagram to

RT-EFSM conversion

RT-EFSM
model

validation

generation of

test sequences

Automatic

generation of

test cases

test cases

(XML store)

FIGURE 3.25 Test case generation process based on real-time extended UML
with RT-EFSM.

 2. Static ventide based on extended UML class diagram: the main
work is to identify the static information of the input and out-
put of the software under test, including the information of the
cross-linked devices around the system under test, the informa-
tion of the bus and I/O interface variables (elements), the tim-
ing requirements of data interaction, and the hardware interface.
For example, an extended stereotype is used to describe the sys-
tem under test and each device cross-connected around it. The
block information on the I/O and data bus is described by the
stereotype <<BLOCK>>, which generally includes the infor-
mation block name, description, refresh period, transmission
type, transmission period, and receiving object. In addition, you
should understand the data exchange and calculation process
inside the software, which generally includes block data, signal
quantity, analog quantity, and variable information.

 3. Dynamic ventide based on real-time extended UML state dia-
grams. It uses a real-time extended state diagram and OCL lan-
guage to complete the dynamic behavior ventide of real-time
embedded system. The main work is to identify the observable
state information presented in the process of system function
realization, including precondition constraints, trigger events,
transition constraints, corresponding system actions, and
expected states. It combines system state transition information,
constructs each super state, and sub-state. It also records the test
input occurrence conditions and response occurrence conditions

130    ◾    Embedded Software System Testing

and studies input sequences and the logical control flow of the
software, such as the moment of input occurrence, the conditions
under which the software system receives specific inputs, and the
order of input processing.

 4. Real-time extended UML state diagram to RT-EFSM conver-
sion. As mentioned at the beginning of this chapter, UML as a
de facto industry standard has the advantage of powerful tool
resources. This book recommends the use of real-time extended
UML to model the real-time embedded software under test, in
order to get RT-EFSM, it is necessary to first convert the real-
time extended UML state diagram (including hierarchy, concur-
rency) into a flat UML state diagram and the flat state diagram
can directly correspond to RT-EFSM. In turn, model validation
and automatic generation of test sequences and test cases can be
completed.

 5. RT-EFSM model validation: to ensure the quality of the model,
the generated RT-EFSM model needs to be verified for determin-
ism, reachability, and consistency, so that it becomes complete,
consistent, and strongly connected, laying the foundation for
the subsequent automatic generation of the RT-EFSM-based test
cases.

 6. Automatic generation of test sequences and test cases based on
RT-EFSM. This book introduces the concept of time-area par-
titioning method and time-constrained transition equivalence
class for real-time embedded systems, uses a test scenario tree-
based approach to generate test sequences and test cases automat-
ically, and finally stores the test cases in XML format to facilitate
testers to convert them into test descriptions identified by specific
test platforms to drive test execution.

 2. Real-time extended UML statechart to RT-EFSM conversion
For the conversion method between the UML state diagram and

FSM, there have been many research results at home and abroad, such
as the spreading method based on D. Harel and his STATEMATE
tool support, the flattening method based on Y.G. Kim, the gradual
improvement based on Petri net to make the hierarchical state dia-
gram into structured, etc. In the following, the existing techniques

Embedded Software System Testing Techniques    ◾    131

and methods are extended by combining the formal semantics of
RT-EFSM and real-time extended UML state diagrams, and a conver-
sion method of real-time extended UML state diagrams to RT-EFSM
is proposed.

Clearly, according to the formal semantics of the real-time
extended UML statechart, a simple statechart without hierarchy and
concurrency structure can be equated to a finite state machine. Then
the (after spreading) RT-EFSM obtained after the transformation of
the real-time extended UML statechart can be defined as follows.

Definition 3.11

Real-time extended UML state diagram transformed to obtain (after
spreading) RT-EFSM, where Gstates is the set of global states, S0 is the
initial state of global states, and Gtrans is the set of global transition
paths.

 1. Build global state
 The largest set of states that a system can have at the same time is

called a global state, denoted as GS. The rules for constructing a
global state GS are as follows:

GS ∈S and satisfies: (1) GS contains the root state; (2) for every
AND composite state s, either s or its sub-states are in GS, or none of
them is in GS; (3) for every OR composite state s, either s and only one
of its sub-states are in GS, or s and all of its sub-states are not in GS.

Based on the above properties, the steps for obtaining GS are as follows.

 1. Generate a state tree from the UML state diagram in the following
steps.

 a. Use the root state of the state diagram as the root state of the
state tree.

 b. The breadth-first search of the state graph with its sub-states as
child nodes of the root.

 c. Continue operation b on the child nodes until there are no
child nodes, i.e., the atomic state is searched.

 d. Refinement of the relationship of sibling nodes in the state
tree.

132    ◾    Embedded Software System Testing

• If the relationship between brothers is or state in the state
tree, no change is required.

• If the relationship between brothers is and state in the state
tree, treat one of the brothers and all its child nodes as chil-
dren of all leaf nodes of the other brother.

 2. Search all states of the state diagram and find the root state.
 3. Perform a depth-first search for all states starting from the root

state, and if the state Si is an atomic state, treat the node together
with all its parents as a GS in the RT-EFSM.

The algorithm for obtaining a state tree from a real-time extended
UML state diagram is shown in Table 3.13.

 2. Build global transition path
From the previous article, it is clear that GS represents the

global state and evt represents the event. For t ∈T, T is said to be
triggered for GS about event evt if any transition t in T satisfies
src G()t ∈ S and evt()t = evt and any two transitions in T are not
in conflict. T is said to be the largest set of transitions valid for
GS about evt if all transitions triggered for GS about evt and not
contained in T conflict with some transition in T .

 The global transition path GT in RT-EFSM can be defined as a five-
tuple, GT = ()GS, evt, grd, act, GS′ , representing the transition from

TABLE 3.13 Algorithm for Obtaining RT-EFSM State Tree from UML State Diagram

Algorithm 3.6 Obtaining RT-EFSM State Trees from Real-Time Extended UML State
Diagrams

INPUT: W(as the Real-time Extened UML Diagram)
OUTPUT: ST(State Tree)
01. SD_Convert_ST) {
02.

 stack=newStack():
03. root=initState; //assign the
initial pseudo-state to the root node
04. while(!W. Empty()){
05. e=W. getNextEvent(); //Take out the
next transition event
06. w=W. getNextState(); //Take out the
next target state
07. if(w. isAtomicState()) //If atomic state
08. stack. Push(e, w); //put (e, w) on the stack
09. else if(w. isORState()){ //if w is or state

(Continued)

Embedded Software System Testing Techniques    ◾    133

TABLE 3.13 (Continued)  Algorithm for Obtaining RT-EFSM State Tree from UML
State Diagram

Algorithm 3.6 Obtaining RT-EFSM State Trees from Real-Time Extended UML State
Diagrams

 10.

if(!stack. Empty()){
11. child=newState(stack. popAll()); //produce
all the events and states in the stack
out of the stack
12. root.addState(child, e);
//event e as a transition event for connected states
13. }
14. Orchild=SD_Convert_ST (w);
//or state, iterative decomposition
15. root. addState(Orchild, e);
//insert the subtree into the root node
16. }
17. else{ //w is and state
18. if(!stack. Empty()){
19. child=newState(stack. popAll());
//produce all the events and states in the stack out of the
stack.
20. root.addState(child, e);
//insert root node, first event as RT-EFSM transition event
21. ANDFather=newANDFather();
//create with intermediate nodes
22. for(i=0; i<w. size(); i++){
// iterate through all sub-states with the state
23. ANDchild= SD_Convert_ST (w. substate(i));
//substitute each child state, iterative decomposition
24. ANDFather. addANDchild(ANDchild);
//insert with intermediate nodes
25. }
26. root. addState(ANDFather,e);
//insert the node with the intermediate node into the root
27. }
28. if(!stack. Empty()){ //if the stack is not empty
29. child=newState(stack. popAll());
20. root. addState(child, e); //insert the state into
the root node, the first event is the transition event of
the state tree
21. }
22. return(root);
23. }

134    ◾    Embedded Software System Testing

one global state GS to another global state GS′. In the UML state dia-
gram, GT is obtained by finding T that satisfies the following conditions.

• The state of GS′ is to convert the source state set in GS to the des-
tination state set.

 grd g= ∪t T∈ rd()t

• where act1 ()t is all the actions that occur when all exit events
occur, act2 ()t is all the actions that occur when all entry events
occur, and act3 ()t is all the actions inside the current state.

The algorithm for finding the global transition path is as
follows.

 1. Take any GS and GS′.

 2. Find S s= ∈{ }| Gs sS G∩ ∈ S′ .

 3. Let S S1 2= −GS , S S= GS′ − , search all transitions t in the
state diagram and get T t1 1= ∈{ }| src()t S ∩ ∈trgt()t S2 ;
search all transitions t in the state diagram and get
T t2 2= ∈{ }| src()t S ∩ ∈trgt()t S2 .

 4. T t3 1= ∈{ }|t T ∩ ∉t T2 , then T3 is the global transition path.

Usually, GT is a series of transitions triggered by an event evt.
Once the global state and global transition path are obtained,
RT-EFSM is generated.

For the transformed RT-EFSM, since the global state is
obtained from the UML state diagram considering all combina-
tions of cases, including the unreachable global state, the trans-
formed simple UML state diagram cannot be equivalent to the
original UML state diagram in terms of operational semantics,
and the test cases generated on this basis contain wrong test
cases, which will make some tests not work properly. Therefore,
the simple UML state diagram must be processed to remove the
unreachable state and the state transition to and from that state.

 3. RT-EFSM-based test sequence generation
 1. Concepts, Definitions and Assumptions

This book assumes that the tester uses real-time extended
UML-based system modeling under test or directly uses
RT-EFSM modeling. After that, the UML model has been con-
verted to RT-EFSM model according to the conversion method
provided in the book. The generated RT-EFSM model has been

Embedded Software System Testing Techniques    ◾    135

verified using the model verification method provided in the
book. Finally, as described below, a minimal, strongly con-
nected, and complete RT-EFSM model has been obtained.

• Verification of static certainty and elimination of equivalent
states ensures that this RT-EFSM is minimal.

• The validation of reachability and the validation of state transi-
tion conflicts ensure that the RT-EFSM is strongly connected.

• Dynamic deterministic validation ensures that this RT-EFSM is
complete.

The correct behavior of real-time embedded software depends not
only on the input but also on whether the clock processing meets
the specified requirements. Therefore the following two core issues
must be addressed in the RT-EFSM-based test methodology.

• Time constraints processing issues.

• Test sequence generation problem.

Based on the above analysis, this section will combine the exten-
sion of RT-EFSM to firstly propose the definition and assump-
tions related to time constraints in real-time embedded software
test sequence generation (such as time region and time transi-
tion equivalence class), and then give the definition of extended
test sequences, and finally adopt the test scenario tree-based
approach to generate test sequences.

Definition 3.12: Time Region

The global clock L in the RT-EFSM element is the set of all state tran-
sition clocks, the value range of is (0, +∞), and the global clock L is
divided into k time regions, then the time points contained in L are
expressed as L L1 2, ,…, Lk , and L L1 2< <…< Lk. Then { ,L L1 2 , ,… Lk } is
said to be the time region division of the time constraint ω on L, as
shown in Figure 3.26.

0 L1 L2 L3 Li Lk L

FIGURE 3.26 Time zone division.

136    ◾    Embedded Software System Testing

According to the above definition, then the time constraint
ω : t l1 2< < t can determine three time regions: (0,t t1 1) (, ,t t2 2), ,[]+∞ .

Definition 3.13: Effective Time Region

Let E be the set of state transition events in RT-EFSM, e E∈ , li be a
temporal region division on L, l Li ∈ . If event e occurs within li and
can trigger state transition, then it is said that li is a valid time region
for event e.

Definition 3.14: Invalid Time Region

Let E be the set of state transition events in RT-EFSM, e E∈ , and li be
a temporal region division on L, l Li ∈ . If event e occurs within li but
cannot trigger any state transition, li is said to be an invalid temporal
region for event e.

Definition 3.15: Time-Constrained Transition Equivalence Class

In real-time embedded software state transition, in addition to the
general state variable (instruction) constraints that can trigger the
transition, time constraints are often used as guardian conditions
to determine whether transition can be triggered. Based on the
temporal region division, Figure 3.27 gives a schematic diagram of
state transition with time and variable constraints represented by
RT-EFSM.

In the state transition shown below, I is the input that triggers the
transition, and the guardianship conditions include the time con-
straint (10 < <lt 20) and the input variable constraint (X == 0x2280).
When the variable constraint is satisfied (X == 0x2280) is true, if
the input I occur in the invalid time region (0, 10) and []5, +∞ , it
will not cause the state transition to occur. Only when the variable

state1

entry / lt1 = 0

evt[(10<lt 1 <20)&&(X==0x2280)] state2

entry / lt2 = 0

FIGURE 3.27 State transition with time and variable constraints.

Embedded Software System Testing Techniques    ◾    137

constraint satisfies (X == 0x2280) is true in the valid time region
(10, 20), and the input event will state transition be triggered.

Based on the above analysis, this book proposes the concept of
time-constrained transition equivalence classes, i.e., the state tran-
sition is divided into valid time regions and invalid time regions
according to time regions, and the transition triggered by events in
different time regions is divided into equivalence classes to lay the
foundation for subsequent test sequence generation. The formal defi-
nition of the time-constrained transition equivalence class is as fol-
lows: timeCTEC = →{ }()S Ssrc trgr _ _[]C I? _!O

• Ssrc: means the source state.

• Strgr: means the target state.

• C: means the guardianship condition under which the transition
occurs, and C = tCnd, vCnd , i.e., the monitoring condition consists
of a time constraint tCnd and a variable constraint vCnd.

• []: means optional and can be omitted when there are no precondi-
tions since not every state transition includes preconditions.

• ?: means input.

• I : means the input variables (including clock constraint vari-
ables) and operations, and I = ivVle, iAct .

• !: means output.

• O : means the output variables (including clock constraint vari-
ables) and operations, and O = ovVle, oAct .

Figure 3.28 gives a diagram of the time-constrained transition
equivalence class. Based on the above definition of time transition
equivalence classes, Figure 3.27 can be divided into three time-
constrained transition equivalence classes as shown in Figure
3.28 (which can also be described in tabular form) (Figure 3.29).

Definition 3.16 Extended Test Sequence USex

According to the definition of time-constrained transition equiva-
lence classes, this book uses a test sequence generation method
based on a test scenario tree, which is composed of time-constrained

138    ◾    Embedded Software System Testing

Time-constrained

Transition equivalence

class

source state

target state

guardianship condition(time/variable

constraint)

input(variables+operations)

output(variables+operations)

FIGURE 3.28 Schematic diagram of the time-constrained transition equiva-
lence class.

timeCTEC01
state1

state2

(0,10]

X==0x2280

...

timeCTEC02
state1

state2

(10<lt1<20)

X==0x2280

...

timeCTEC02
state1

state2

[20,+∞)

X==0x2280

...

FIGURE 3.29 Example of a time-constrained transition equivalence class.

transition equivalence classes and is a complete description of a test
path, so extended test sequences are introduced USex, which are used
to represent the test path, as defined below:

US tex = ∪imeCTEC 1 2 timeCTEC ∪… timeCTEC … ∪… timeCTECn

= →{ _()S Si j tCndi j→ →, vCndi j _? ivVle ,i j→ → iActi j

 _! ovVle ,i j→ → oAct }i j ∪

= →{ _()S Sj k tCndj k→ →, vCndj k _? ivVle ,j k→ → iActj k

_! ovVle ,i j→ → oAct }i j ∪…

where 0 ≤ <i j < ≤k n, n is the maximum state space value of the sys-
tem, i.e., the extended test sequence is the set of time-constrained
transition equivalence classes.

Embedded Software System Testing Techniques    ◾    139

As can be seen from the above definition, the definition of the FSM
UIO sequence corresponding to USex each state transition of the
sequence is also not suitable here and should be redefined.

Definition 3.17 Extended Unique Input/Output Sequence

{ }[]=UIO _? _!ex C I O , see Definition 3.16 for the meaning of each
element in the UIOex sequence.

Definition 3.18 Test Scenario

A real-time embedded software test scenario based on RT-EFSM
state transition is a series of state transition processes corresponding
to a typical execution path in the RT-EFSM state diagram.

	 2.	 Test sequence generation process
After obtaining the RT-EFSM model, based on the above defi-

nitions and assumptions, the RT-EFSM test sequence generation
process based on the time-constrained transition equivalence
class is shown in Figure 3.30.

Construction of time-bound transition equivalence classes.
Time-constrained transition equivalence classes are the basis
for test sequence generation, so the RT-EFSM model should be
analyzed first to obtain time-constrained equivalence classes,
as follows.

RT-EFSM

Model

Constuction of

time-bound

transition

equivalence classes

Test

sequence

Test the

construction of the

scenario tree generation

FIGURE 3.30  Test sequence generation process based on time-constrained tran-
sition equivalence class.

140    ◾    Embedded Software System Testing

 1. Iterate through the set of states in RT-EFSM S* and the set of input
events I, and for each state s ∈S*, obtain the trigger event of e I∈ .

 2. Generate the transition set T * triggered by event e, select c C∈ *
according to the trigger constraints C* in T *, and calculate the
time region division of c. And according to the time region divi-
sion to obtain the transition guardianship conditions (usually
including time constraints, variable constraints), and clarify the
input variables and trigger events, and output variables and out-
put events; if there is no time constraint, the time constraint in
the equivalence class is empty.

 3. Based on the above analysis, the full-time-constrained transition
equivalence classes obtained are listed in tabular form.

Test the construction of the scenario tree. The Test Scenario Tree
(TST) is constructed based on the time-constrained transition
equivalence class. It is a complete description of the test path that
can be used to generate the desired test sequence by traversing the
test scenario tree. The test scenario tree construction algorithm is
given in Table 3.14.

After obtaining the test scenario tree, the depth-first search
algorithm can be used to traverse all possible paths of each tree
from the root node to the leaf nodes and generate the test sequence
based on the information of the equivalence class of the time tran-
sition constraints in each path.

Test sequence generation. Each state transition in RT-EFSM cor-
responds to many time-constrained transition equivalence classes
in the test scenario tree, and each test sequence can be represented
as a collection of extended test sequences USex. The construction
algorithm of test sequences based on the test scenario tree is shown
in Table 3.15. After obtaining the test sequences, the synchroniza-
tion problems (including the first and second type of synchroniza-
tion) in the test sequences need to be processed. The test cases can
be generated according to the test coverage criterion in the next step.

Synchronization problem of test sequence. For the test sequences
generated based on RT-EFSM, there may be synchronization prob-
lems in the concurrent transition of states in the test sequences.
This book divides the synchronization problems of RT-EFSM state
transition into the first type of synchronization problems and the
second type of synchronization problems.

Embedded Software System Testing Techniques    ◾    141

TABLE 3.14 Algorithm for Construction of the Test Scenario Tree TST

Algorithm 3.7 Construction of the Test Scenario Tree TST

INPUT: RT-EFSM Model
OUTPUT: TST
STEP01:
01. Let TST contains only the root node of RT-EFSM Model;
// Initialization Process
02. Let the node variable, named Node, point to the root
node;
03. Let the current node variable, named curNode, point to
the subsequent state of the root node;
STEP02:
04. IF the childNumber of node==0

 05.

IF the subsequentState == NULL;
06. THEN END;
07. ELSE
08. curNode point to the subsequent state of node;
09. construct timeCTEC of curNode;
10. FOR EACH timCTEC
11. Back to previous node;
12. IF timeCTEC is not ventide in back path THEN
13. Let curNode be the child of node
14. IF childNumber==0 THEN
15. Let node point to the parent of curNode,

Jump to STEP02;
16. ELSE
17. Let node point to the first child of

curNode, Jump to STEP02;
18. END FOR
STEP03:
19. IF the childNumber of node>0 THEN
20. FOR EACH child of node
21. IF child is not visited THEN
22. node point to the child;
23. Mark the child as visited, Jump to

STEP02;
24. END FOR
25. IF (All child nodes have been visited) AND

(node==root) THEN END;
26. ELSE
27. Let node point to the parent of curNode,

Jump to STEP02;

142    ◾    Embedded Software System Testing

 1. The first type of synchronization problem
The first class of synchronization problems. Let M be an

RT-EFSM model, then M S= * , S I0 , , O T, , V E, , L , t is a state
transition t ∈T within M S*

i, is a local state within M ij ()≠ j , and
S* is a synchronized input state of t if there exists t ' h()S t* = ead '()
and t ' and t have the same input, and the set formed by S* is
denoted as Con()t .

Let ti j,t be the transitions within M Mi j, ()i j≠ , respectively, if
the sequence of transitions < …t ti j > satisfies:

TABLE 3.15 Test Sequence Generation Algorithm Based on Test Scenario Tree TST

Algorithm 3.8 Test Sequence Generation based on TST

INPUT: TST
OUTPUT: Test Sequence (TS)
STEP01:
01. Let TS be empty; // Initialization Process
02. Let current timeCTEC, named curNode, point to the root

of TST;
03. Let evt be the event of the curNode;
STEP02:
04. IF curNode is the root THEN
05. IF curNode has not been visited THEN
06. Output the current timeCTEC to TS;
07. Mark curNode as visited;
08. FOR EACH child of curNode
09. IF child has not been visited THEN
10. Let curNode point to child, Jump to STEP02;
11. IF All nodes have been visited THEN END;
12. END FOR
STEP03:
13. IF curNode is not the root THEN
14. IF curNode has not been visited THEN
15. Output the current timeCTEC to TS;
16. Mark curNode as visited;
17. IF the childNumber of curNode==0 THEN
18. Output TS;
19. Let evt of the last timeCTEC in TS be empty;
20. Bask to the parent node, Jump to STEP02;
21. ELSE
22. FOR EACH child of curNode
23. IF child has not been visited THEN
24. Let child point to curNode, Jump to STEP02;
25. END FOR

Embedded Software System Testing Techniques    ◾    143

• Tail (tj) Con (tj)

• Transition tk ()k i≠ , j is not a transition within Mi

Then, the transition sequence is called the first class of synchro-
nous input transition sequence.

Test sequences containing the first type synchronous input
transition sequences have the first type synchronization prob-
lems. The input sequence corresponding to a test sequence R with
a first type synchronization problem may result in a different test
sequence R’ than R being executed. To avoid the first synchroni-
zation problems, they should be solved by adding a synchroniza-
tion lock statement.

Check Lock L; // Check if L is 0
Lock L; // L++, L becomes 1,
synchronous lock L is locked
Unlock L; // L--, L becomes 0

Lock L executes operation L++, Unlock L executes operation L--,
and Check Lock L checks if L is 0. The execution of Lock L and
Unlock L is non-blocking. If the synchronous lock L is locked
(), the execution of Check Lock L is blocked. Otherwise, it is not
blocked.

The test sequence generation algorithm for solving the first
synchronization problem is given in Table 3.16.

 2. The second synchronization problem. ti j, t are transitions within
M Mi j, ()i j≠ respectively, if the sequence of transitions < …t ti j >
satisfies:

• Head (tj) ∈ Con (tj)

• Transition tk ()k i≠ , j is not a transition within M j, then the tran-
sition sequence is called the second synchronous input transition
sequence.

This book will contain test sequences with second synchro-
nous input transition sequences that have second synchroni-
zation problems.

The input sequence corresponding to a test sequence R with
a second type synchronization problem may lead to the execu-
tion of a test sequence R’ different from R. Table 3.17 gives the
algorithm for generating a test sequence to avoid a second type
synchronization problem.

144    ◾    Embedded Software System Testing

 4. Test case generation

 1. Test sequence traversal
Based on the generated test sequences, by traversing the

test sequences (generated based on the TST), we can obtain.
The time-constrained transition equivalence classes involved
in each test sequence are obtained. Then test cases are gener-
ated according to certain adequacy coverage criteria (see later),
test cases can be generated. The process of traversing the test
sequences is as follows.

TABLE 3.16 Algorithm for Solving RT-EFSM First Type Synchronization Problems

Algorithm 3.9 Solving RT-EFSM First Type Synchronization Problems

Input: set (1T T , 2T , …, Tn) of continuous state transition sequences of RT-EFSM
Output: test sequence R.
Step 1: Create a synchronous lock queue Q. For t for which Con()t is not empty, define a
synchronous lock iL = 0 for t if there exists Con()S ∈ t that is traversed by T.

Step 2: Empty each Ti.
Step 3: For each transition t in E :
 1. If t is a transition in the synchronous lock queue Q, add the statement Check Lock Li

before all statements corresponding to t .
 2. If Tail()t Con()t ′ , t ′ is a transition in the synchronous lock queue Q whose

corresponding synchronous lock is Lj, then add the declaration Lock Lj to t .
 3. If the input of Mi’s transition t is global input A, add “InputA” to the end of Ti’s

queue.
 4. If the input of Mi’s transition t is the local input B from M j, then add “Receive B

from M j” to the end of Ti’s queue.
 5. If the output of Mi’s transition t is a local output C to M j, add “Send C to M j” to the

end of Ti’s queue.
 6. If Head t Con()() ∈ t ′ and t ′ is a transition in a synchronous lock queue Q whose

corresponding synchronous lock is Lj, add the statement Unlock Lj after all
statements corresponding to t .

Step 4: Process each statement in T . If all statements corresponding to a local transition
are processed, the transition is output to the test sequence queue.

TABLE 3.17 Algorithm for Solving RT-EFSM Second Type Synchronization Problems

Algorithm 3.10 Solving RT-EFSM Second Type Synchronization Problems

Input: set (1T T , 2T , …, Tn) of continuous state transition sequences of RT-EFSM
Output: test sequence R.
Step 1: the same as steps 1~4 in Algorithm 3.9.
Step 2: If the generated test sequence contains a second type of synchronous input
transition sequence < …ti t j >, mark the transition t j such that the migrated input is not
generated when the corresponding input sequence is generated.

Embedded Software System Testing Techniques    ◾    145

First, a stack STACK()x is set to hold the information of the state
nodes NODE()x and transition TRANSPORTATION()x y,
experienced by the test scenario SCENARIO()x , and a hash
table HASH()x is set to hold the information of the state transi-
tions that have been visited from the judgment node in the test
sequence. In addition, during the test sequence traversal, the
start node is noted as A, the target node is noted as B, and the
intermediate node is noted as C. The specific search process is
described as shown in Table 3.18 Iteration algorithm for the test
sequence.

 2. Test case generation
Based on traversing the test sequence, information of all

time-constrained transition equivalence classes, such as
time regions, guardianship conditions, and input/output
information of state transition, is obtained. By instantiat-
ing time constraints, variable constraints, input/output
information, etc. in time-constrained transition equiva-
lence classes and combining with certain test case cover-
age guidelines, test cases can be automatically generated. In
FSM-based testing methods, the commonly used and more
mature test coverage guidelines are generally studied from
state coverage, transition coverage, Boolean coverage, full
predicate coverage, conversion pair coverage, etc. Different
coverage guidelines generate different sets of test cases with
different abilities to reveal errors. Given that these cover-
age criterion algorithms are relatively mature, only a brief
description is given below.

State coverage criterion: The generated test case set is required
to test every state, i.e., it should be such that every state in
RT-EFSM is visited at least once. The state coverage criterion
is the simplest and most easily satisfied test criterion and
often requires the fewest test cases.

The test sequences generated by the algorithm in
Section 3.3.4 can cover all states and transitions, based on
which. Based on this, we can generate test cases that meet
the requirements of state coverage and transition coverage
criteria by assigning appropriate values to variables. The
method is relatively simple.

146    ◾    Embedded Software System Testing

Transition coverage criterion: It is required that the gen-
erated test case set causes each transition of RT-EFSM to be
activated at least once. The system is first brought to a cer-
tain state (current state). If a transition “event” is accepted
and the value of the transition “condition” is true, then the
transition is activated. The transition coverage criterion is

TABLE 3.18 Iteration Algorithm for the Test Sequence

Algorithm 3.11 Test the Traversal Algorithm of a Sequence

Input: Test sequence (based on TST)
Output: State transition information obtained by traversal

Step 01:
01. ACK(s), (∃h)HASH(h), (∃c)SCENARIO(c),

Step 02:
02. CTIVITYDGRM(g) ∧ (∃a)STARTNODE(a, g)
03. → COPY(a, c) ∧ RECORD(a, A) ∧ PUSH(a, s),
04. P1:
05. (∃B)(TRANSPORTATION(B, A) ∧ JUDGENODE(B))
06. → SETFLAGTRUE(B),
07. (∃C)(TRANSPORTATION(C, B) ∧ FLAGFALSE(C))
08. → SETFLAGTRUE(C) ∧ COPY(C, c),
09. INSTEAD(A → B → C, A → B, B, B → C),
10. COPY(A → B → C, c),
11. PUSH(A → B, s), PUSH(B, s), PUSH(B → C, s), PUSH(C, s),
12. SAVE(B → C, h),
13. RECORD(C, A),
14. P2:
15. (∃B)(TRANSPORTATION(B, A) ∧ ¬JUDGENODE(B))
16. → COPY(A → B, c) ∧ COPY(B, c),
17. PUSH(A → B, s), PUSH(B, s),
18. RECORD(B, A),

Step 03:
19. (∃a)NODE(a, g) ∧ ¬END(a, g) → P1 ∨ P2, (∃a)NODE(a, g) ∧

END(a, g) ∧ (∀n)INSTACK(n, s)
20. → STACKTOPPULL(n, s),
21. (∃a)NODE(a, g) ∧ END(a, g) ∧ (∀i)INSTACK(i, s)
22. → STACKTOPPULL(i, s),

Step 4:
23. ISSTACKTOP(n, s) ∧ CORRENT(n) ∧ JUDGE(n) → (P1 ∨ P2) ∧ P3,
24. ISSTACKTOP(n, s) ∧ CORRENT(n) ∧ ¬JUDGE(n)
25. →STACKTOPPULL(n, s).

�

Embedded Software System Testing Techniques    ◾    147

a simpler and more easily satisfied test criterion and often
requires fewer test cases.

Boolean override: Requires that all migrated Boolean
conditions of RT-EFSM take TRUE or FALSE once
each. The transition coverage test guideline simply tests
whether the statutes’ transitions are implemented; it
does not guarantee that every transition is implemented
correctly. To effectively test each transition in RT-EFSM,
it is necessary to have corresponding test cases to test
when the value of the ventid condition (precondition) in
the transition is true or false; if the value of the Boolean
condition is true, the system state is migrated to the
corresponding next state according to the transition
relation. Otherwise, the system does not execute the
transition relation, and the system stays in its original
state.

Full predicate coverage criterion: When there are multi-
ple Boolean conditions in the transition relation, the cover-
age criterion is called the full predicate coverage criterion
for transition conditions. That is, each Boolean condition
is required to take TRUE or FALSE once. The Boolean cov-
erage criterion is a special case of the full predicate cover-
age criterion.

Transition pair coverage criterion: Requires that each
state be considered independently and that the input tran-
sitions of each state match its output transitions, i.e., the
combination of these input and output transitions of the
state is used to create test cases.

In addition to the above coverage criterion, this book
combines the time-constrained characteristics of real-time
embedded software and proposes a time-conditional cover-
age criterion, that is, for each state transition in RT-EFSM, in
addition to satisfying the full predicate coverage or Boolean
coverage criterion, the time used for transition must satisfy the
time constraint, which can be specifically divided into fixed
time, obeying some distribution function or time interval for
processing respectively, and this coverage condition is defined
as follows.

148    ◾    Embedded Software System Testing

Definition 3.19

Time-conditional coverage criterion, defined as follows.

 ∃ ∈S S* *
i j, ∃ ∈S S , ∀ ∈t T { }S Si j→

and satisfies

 t = ={ }t t t tS F≤ ∈t t| tI

According to the above guidelines, all migrated time-related Boolean
conditions of RT-EFSM must take TRUE or FALSE once each. Both
those satisfying the time constraints and those not satisfying the
time constraints have corresponding test sequences for testing to
ensure that the automatically generated test sequences can satisfy the
adequacy requirements.

The test case generation algorithm based on the temporal conditional
coverage adequacy determination criterion is shown in Table 3.19.

TABLE 3.19 Test Case Generation Algorithm Based on Time-Conditional Coverage
Criterion

Algorithm 3.12 Test Case Generation Based on Time-Conditional Coverage Criteria

Input: extended test sequence USex
Output: set of test cases that satisfy the time-conditional coverage criterion
StateTo(s): the state of arrival s
transitionOut(s): the set of transitions out of the state
event(s’): the event that triggers the s’ state
ventideon(s’): the precondition of s’, divided into variable constraints and imposed
constraints

Follow(s’): the next state of s’
ExpectedState – the post-converted state
ValueTransPara(s’): assigns a value that raises the trigger event when the precondition
variable for s’ is satisfied

timSimple(F): sampling according to the time-constrained distribution function F
ExpressionParse(exp, value): get the value of the variable in the expression from the
syntax analysis of the expression exp

(Continued)

Embedded Software System Testing Techniques    ◾    149

TABLE 3.19 (Continued)  Test Case Generation Algorithm Based on Time-Conditional
Coverage Criterion

Algorithm 3.12 Test Case Generation Based on Time-Conditional Coverage Criteria

01 TimeConstraintCoverageTestCaseGen (Usex)
02. BEGIN

 03

TestcaseSet = EMPTY;
04 FOR EACH source state in Usex // traverse the test
sequence
05 Get StateTo(s);
06 Get transitionOut(s);
07 FOR EACH outgoing transition ∈ transitionOut(s)
08 ExpectedState = Follow(s’);
09 ValueTransPara(s’) = EMPTY;
10 Get event(s’) and 82ventide8282on(s’);
11 FOR EACH conditioni in 82ventide8282on(s’)
12 IF(conditioni. varConstrain == TRUE))
13 IF(conditioni. timeConstrain.type == tS) //

time constraint is a fixed time value
14 IF(ValueTransPara(s’) ≤
conditioni.timeConstrainValue)
15 TestcaseSet = TestcaseSet ∪
{StateTo(s), ValueTransPara(s’), ExpectedState}; //variable
instantiation
16 END IF
17 END IF

18 IF(conditioni.timeConstrain.type == tF) //
time constraint is the distribution function F

19 ValueTransPara(s’) =
timSimple(F) //sample the values
20 IF(ValueTransPara(s’) ≤
conditioni.timeConstrainValue
21 TestcaseSet =
TestcaseSet ∪ {StateTo(s), ValueTransPara(s’),
22 ExpectedState};
23 END IF
24 END IF
25 IF(conditioni.timeConstrain.type == tI) //

time constrained interval
26 ValueTransPara(s’) = timSimple(F)
27 IF(ValueTransPara(s’) ≥ conditioni.
timeConstrain.minValue&&
28 ValueTransPara(s’) ≤ conditioni.
timeConstrain.maxValue)

(Continued)

150    ◾    Embedded Software System Testing

TABLE 3.19 (Continued)  Test Case Generation Algorithm Based on Time-Conditional
Coverage Criterion

Algorithm 3.12 Test Case Generation Based on Time-Conditional Coverage Criteria

29 TestcaseSet = TestcaseSet ∪
{StateTo(s), ValueTransPara(s’), ExpectedState};
30 END IF
31 END IF
32 BEGIN
33 IF(a condition variable var ∈
StateTo(s),.
34 var.name == conditioni.name ∧
var.value == conditioni.value)
35 ValueTransPara(s’) =
ValueTransPara(s’) ∪ {conditioni.name, conditioni.value};
36 END
37 ELSE((conditioni.varConstrain ==
expression) && (conditioni.timeConstrain == time)
38 BEGIN
39 IF(a condition variable exp ∈
StateTo(s),
40 exp.name == conditioni.name ∧
exp.value == conditioni.value)
41 ExpressionParse(exp.name, exp.
value);
42 ValueTransPara(s’) =
ValueTransPara(s’) ∪ {vari.name, vari. Value};
43 END
44 END IF
45 END FOR
46 ValueTransPara(s’) = ValueTransPara(s’) ∪
{event(s’).name, event(s’).afterValue};
47 TestcaseSet = TestcaseSet ∪ {StateTo(s),
ValueTransPara(s’), ExpectedState};
48 ExpectedState = current state;
49 FOR EACH variable var in ValueTransPara(s’)
// traversal, all variables instantiated
50 ValueTransPara(s’) = ValueTransPara(s’)
– {var.name, var.value};
51 var.value = var.value;
52 ValueTransPara(s’) = ValueTransPara(s’)
∪ {var.name, var.value};
53 TestcaseSet = TestcaseSet ∪ {StateTo(s),
ValueTransPara(s’), ExpectedState};
54 END FOR
55 END FOR
56 END FOR
57 END TimeConstraintCoverageTestCaseGen

Embedded Software System Testing Techniques    ◾    151

 3. Description of test-type support
Real-time embedded software system testing based on the

black-box testing method requires different test types to verify dif-
ferent characteristics of the software under test. The test sequences
and test case generation methods provided in this book can gener-
ate normal functional test cases and test types such as exception,
boundary, performance, interface, safety, and strength. The spe-
cific descriptions are as follows.

Normal function test cases: these can complete the examination
of the normal workflow situation of the system. By traversing the
time-constrained equivalence classes in the test sequence, select-
ing the normal equivalence classes of variable constraints and time
constraints, and testing them according to the normal workflow
of the system, test cases for normal functions can be generated.

Abnormal test cases: these can complete the examination of
the functional implementation in the abnormal situation of the
system. In the test sequence and test case generation method
proposed in this book, the design of abnormal test cases can be
accomplished by artificially setting unreachable state transition,
state transition of wrong timing sequence, variation testing in the
case of multi-variable constraints, etc., or by selecting use cases
in the range of non-normal equivalence classes for variables and
time constraints.

Boundary test cases: these can complete the examination of
the system’s functional implementation in the boundary case,
can include the test of the boundary or endpoint of the system
input or output domain, the test of the boundary or endpoint of
state transition, the test of the boundary or endpoint of functional
boundary, the test of the boundary or endpoint of performance
boundary, and the test of the boundary or endpoint of the capac-
ity boundary. In the test sequence and test case generation method
proposed in this book, the design of boundary test cases can be
completed by analyzing the number of variables and time con-
straints in the time-constrained transition equivalence class and
selecting the boundary point (value) use cases for state transition,
function, and performance.

Performance test cases: these can be completed to exam-
ine the accuracy of program calculation (processing accu-
racy) when the system obtains quantitative results, the time

152    ◾    Embedded Software System Testing

characteristics of the system and the actual time to complete the
function (response time), the amount of data processed by the
system to complete a specific function, or the system’s ability to
handle concurrent things and concurrent user access. The test
sequences and test case generation methods proposed in this
book are fully capable of accomplishing the examination men-
tioned above of system performance, i.e., they can support the
generation of performance test cases.

Interface test cases: these can complete the test of all system’s
external interfaces, including the examination of the format nor-
mality and content correctness of the interface communication pro-
tocol, need to test each external input/output interface of the system
for normal and abnormal conditions. In real-time embedded soft-
ware system testing, interface testing is one of the core elements of
testing. According to the book’s support mechanism for ventide the
system and its surrounding cross-linked devices and the definition
of time-constrained transition equivalence classes, It is obvious that
the test sequences and test case generation methods proposed in the
book are fully capable of generating interface test cases.

Security test cases: these can be completed to test the system’s abil-
ity to prevent dangerous states from occurring, to handle and protect
the system under abnormal conditions, to handle failure modes and
safety-critical operation errors. In the test sequence and test case gen-
eration method proposed in this book, the design of abnormal test
cases can also be completed by artificially setting unreachable state
transition, state transition of wrong timing, and other variant tests.

Intensity test cases: these can be completed for the maximum
amount of information processed by the system, the data capacity
of the saturation experiment indicators and continuous prescribed,
continuous uninterrupted testing. Obviously, in the test sequence
and test case generation method proposed in this book, the design
of intensity test cases can be achieved by applying a large amount of
interface data to all system interfaces under test in a given time and
increasing the long-time examination of system operation.

In addition to the test mentioned above types, the test case
design of the recovery test, data processing test, and other types
of test cases can be completed by using the test sequence and test
case generation methods proposed in this book. In addition, after
extension, it can support the design of reliable test cases.

Embedded Software System Testing Techniques    ◾    153

	 4. XML-based test case storage
The test cases generated using the method provided in this

chapter are independent of the specific test platform. To make
the generated test cases easily convertible into test descriptions
(or test scripts) supported by the specific test platform, they must
be expressed in the form of a common, easy-to-grasp intermedi-
ate language for testers so that the readability of the test data can
be achieved and the computer recognition can be facilitated. On
the basis of this intermediate language form of test case data, test
descriptions (or test scripts) supported by a specific test platform
can be generated through further processing.

With the continuous development of computer technology,
markup languages have become an important means of data stor-
age and conversion in the software field. XML (Extensible Markup
Language) is a markup language that provides a structured meta-
data representation with the platform and semantic independence,
openness, and extensibility. Due to the self-explanatory nature of
XML, structured data can be easily read and saved. Therefore,
the generated test cases are saved in XML format to support sub-
sequent automatic conversion to test descriptions (scripts) sup-
ported by the test platform.

In real-time embedded software testing, the test cases gener-
ated based on RT-EFSM describe a complete execution process of
system activities. The test cases should be saved as follows.

• Test case index information <TC: IndexInfos>, which can be
subdivided into test case number information <TC: SNInfo>,
test case person information <TC: PersonInfo>, test case time
information <TC: DateInfo>, test case version information <TC
VersionInfo>, and so on.

• Software under test information <TC: SUTInfos>, software
under test name <TC: SUTNameInfo>, software under test ver-
sion information <TC: SUTVersionInfo>, software development
unit under test information <TC: SUTDeveloperInfo>, etc.

• Test case static information <TC: StaticInfos>, which can be subdi-
vided into emulation device information <TC: SequipmentInfo>,
bus type information <TC: IOBusInfo>, variable information
<TC: VarDataInfo>, etc.

154    ◾    Embedded Software System Testing

• Test case dynamic information <TC: DynamicInfos>, which can
be subdivided into state information <TC: StateInfo>, constraint
information <TC: ConstraintInfo>, state transition information
<TC: StateTransition>, input information <TC: InputInfo>, out-
put information <TC: OutputInfo>, etc.

The hierarchy of the test cases stored in XML format is shown in
Table 3.20.

An example of storing test cases for UAV flight control software
in XML format is given below.

<TC: TestCase20091210>
 <TC: IndexInfos >
 < TC :SNInfo >T01-GN-101</ TC :SNInfo >
 <TC: PersonInfo >HEEJUN</ TC: PersonInfo >
 <TC: DateInfo>2010/12/10</ TC: DateInfo>
 <TC: VersionInfo> V1.0</.TC: VersionInfo>
 </TC: IndexInfos >
 <TC: SUTInfos>
 <TC: SUTNameInfo>UAVFCS</ TC: SUTNameInfo>
 <TC: SUTVersionInfo>V3.45</ TC: SUTVersionInfo>
 <TC: SUTDeveloperInfo>CCTC</ TC:
SUTDeveloperInfo>
 </ TC: SUTInfos>.
 <TC: StaticInfos>
 <TC: SequipmentInfo>NULL</ TC: SequipmentInfo>
 <TC: IOBusInfo>
 <IOBus001> MIL-STD-1553B </
IOBus001>
 <IOBus002> RS-422</ IOBus002>
 <IOBus003> RS-232</ IOBus003>
 </ TC: IOBusInfo>.
 <TC: VarDataInfo>
 <VarData001>
 <VarData001Name>A1</
VarData001Name >
 <VarData001Type>Int</
VarData001Type >
 <VarData001>
 . . .

Embedded Software System Testing Techniques    ◾    155

TABLE 3.20 XML Storage Structure for Test Cases

<TC: TestCaseID

<TC: IndexInfos

<TC: SNInfo>

…

</TC: SNInfo>

<TC: DateInfo> Use Case Index Information

...

</TC: DateInfo>.

</TC: IndexInfos

<TC: SUTInfos

<TC: SUTNameInfo

... information about the software under test

</TC: SUTNameInfo>.

</TC: SUTInfos>

<TC: StaticInfos

<TC: SequipmentInfo >

... static information

</TC: SequipmentInfo >

</TC: StaticInfos >

Test

Cases

<TC: DynamicInfos

<TC: StateInfo >

... status information

</TC: StateInfo >

</TC: ConstraintInfos>

<TC: ConstraintInfo

... Binding Information

</TC: ConstrainsInfo >

<TC: StateTransition > Dynamic

Information

... Transition Information

</TC: StateTransition >

<TC: InputInfo >

... Enter information

</TC: InputInfo >

<TC: OutputInfo >

... Output Information

</TC: OutputInfo >

</TC: DynamicInfos >

</TC: TestCaseID>.

156    ◾    Embedded Software System Testing

 <VarData006>
 < VarData006Name>C1</
VarData006Name >
 <VarData006Type>Int</
VarData006Type >
 <VarData006>
 <TC: VarDataInfo>
 </ TC: StaticInfos>.
 <TC: DynamicInfos>
 <TC: StateInfo>
 <TC: State001>
 <StateID>MA</ StateID>
 <StateName>ManualAmendment </ StateName>
 <StateDescribe>NULL</ StateDescribe>
 <StateAttribute> ManualAmendment</
StateAttribute>
 </ TC: State001>
 . . .
 <TC: State006>
 <StateID>CRC</ StateID>
 <StateName> CarriageRemoteControl </
StateName>
 <StateDescribe>NULL</ StateDescribe>
 <StateAttribute> CarriageRemoteControl </
StateAttribute>
 </ TC: State006>
 </ TC: StateInfo>
 <TC: ConstrainsInfo>
 <varConstraint>{(C1= =1)&&(A2= =1,vg=
=552.8)}< varConstraint >
 <timeConstraint>{gt>0&<<=20ms}<timeConstra
int
 </ TC: ConstrainsInfo>.
 <TC: StateTransition>
 <StateTransitionID>AC-MA</ StateTransitionID>
 <SourceState>AC</ SourceState>
 <DestState>MA</ DestState>
 <ventide>event1</ ventide>
 < VarDataInfo >C1</ VarDataInfo >
 < VarDataInfo >A2</ VarDataInfo >
 < VarDataInfo >vg</ VarDataInfo >
 < ConstrainsInfo >

Embedded Software System Testing Techniques    ◾    157

 <varConstraint>{(C1= =1)&&(A2= =1,vg=
=552.8)}< varConstraint >
 <timeConstraint>{gt>0&<<=20ms}<timeConstr
aint>
 </ ConstrainsInfo >
 <TransitionActivityList>NULL</
TransitionActivityList>
 </TC: StateTransition >
 <TC: InputInfo>
 <VarData001Name>A2</VarData001Name >
 <VarData001Type>Int</ VarData001Type >
 <VarData003Name>vg</VarData003Name >
 <VarData003Type>Double</ VarData003Type >
 <VarData006Name>C1</VarData006Name >
 <VarData006Type>Int</ VarData006Type >
 <eventInfo>
 <ventide>event1</ ventide>
 <event>
 ReceiveData(C1, 1, STATE_OF_OPERATION, 1);
 GetGlobalTime(gt);
 GetLocalTime(lt);
 ConstraintCAL(C1,A2,vg,gt,lt);
 <event>
 </ eventInfo>
 </ TC: InputInfo>.
 <TC: OutputInfo>
 <VarData005Name>B2</VarData005Name >
 <VarData005Type>Int</ VarData005Type >
 <eventInfo>
 <ventide>event2</ ventide>
 <event>
 SendData(A2, vg, STATE_OF_OPERATION, 0);
 <event>
 </ eventInfo>
 <</ TC: OutputInfo>
 </ TC: DynamicInfos>
 </TC: TestCase20091210>

158    ◾    Embedded Software System Testing

3.4 SUMMARY
The introduction of formal methods helps improve the automation of real-
time embedded software testing and is the future trend and direction in
software testing. In this chapter, we systematically introduce the embed-
ded software system testing techniques based on formal methods. Firstly, a
comprehensive summary and sorting out of software formal testing tech-
niques is given, and the testing techniques based on FSM and EFSM are
highlighted. A real-time EFSM model RT-EFSM is given, and the model
verification techniques are studied in depth to lay the foundation for the
subsequent test case generation based on RT-EFSM.

159

C h a p t e r 4

Real-Time Embedded
Software Automation
Test Description
Technology

The test description (script) in embedded software system test-
ing is the core element driving automated testing. How to design

and implement a test description language that meets the characteristics
of embedded software is directly related to the success or failure of sub-
sequent automated test environment construction, and this chapter will
explain and illustrate the real-time embedded software test description
technology in detail.

4.1 TEST DESCRIPTION CONCEPT AND CLASSIFICATION
4.1.1 Test Description Concepts

With the development of the modern software industry, the scale of soft-
ware is increasingly large, and for a long time, the traditional software
testing used manual methods with low efficiency. Obviously, when the
software is very large, the number of test codes is very impressive, which
will inevitably lead to software testing costs and an increase in the num-
ber of software testing cycles. The establishment of maintainable, effective

DOI: 10.1201/9781003390923-5	

https://doi.org/10.1201/9781003390923-5

160    ◾    Embedded Software System Testing	

software testing can greatly reduce the cost of engineering. Therefore, the
software testing automation requirements are also increasingly urgent.

Real-time embedded software, due to its complex operating environ-
ment and interface cross-linking relationships, requires high real-time
test input and feedback processing, making it difficult to ensure the effec-
tiveness of traditional manual testing. Therefore, more and more research
studies introduce automation testing techniques into the field of real-time
embedded software testing.

Real-time embedded software automation testing is essentially based
on user programming testing, so the introduction of test description tech-
nology is an effective means to realize test automation technology, which
can reduce the workload of testers and improve the maintainability of
software testing. At the same time, by enhancing the portability of the test
description language, it is conducive to the realization of cross-platform,
which can improve the reusability of the test code and the repeatability of
the test.

The purpose of the test description is to: (1) define the test case running
scenario; (2) allow testers to customize their own test “metadata”; and (3)
facilitate running on a specific test platform. Test description is mainly the
description of test cases. From the results of current literature research,
there is no standard or specification for test description.

The test description is a standardized description of a sequence of soft-
ware test events and test instructions. Test descriptions and test scripts
are closely related. Testers can express the test process and test intent
through graphical or non-graphical test descriptions and then generate
test scripts from the test descriptions to drive the tests. The method of test
description directly affects the efficiency and difficulty of user-constructed
tests. Therefore, a good test description method must have the following
characteristics:

• Accuracy and clarity without ambiguity;

• Both graphical and non-graphical test descriptions are supported by
a set of normalized languages;

• Graphical test descriptions should have mechanisms for automatic
generation of normalized language;

• With a certain specification, test descriptions are generally able to
reuse.

Real-Time Embedded Software Automation Test    ◾    161

4.1.2 Test Description Classification

The classification of test descriptions can be classified in terms of usage,
description means, and so on.

 1. By usage, test descriptions can be divided into the following
categories:

• For the auxiliary use of software development and design pro-
cess, such as in the test-based software development model, the
test design should precede the software implementation, when
the test description is used to assist test development, help pro-
grammers sort out the development intention and improve the
correctness and effectiveness of development.

• It is used for test case execution, which aims to improve the auto-
mation of testing, and mostly uses test scripts to store and execute
test cases to drive the testing process and achieve the purpose of
automated test execution.

• For test design and test execution, such as Testing and Test
Control Notation 3 (TTCN-3), which uses a combination of tree
table notation to guide the software development process and can
complete the automated execution of test cases.

 2. By means of description, test descriptions can be classified into natu-
ral language description methods, structured table methods, descrip-
tions based on formal methods, and test language descriptions.

• Natural language description method. It is mainly applied to the
traditional manual testing process, which generally uses manual
operation to complete the test data input, and its advantage is
that the testers are intuitive and clear. However, the quality and
granularity of this description depend entirely on the use case
designer, which cannot be recognized by the computer. In addi-
tion, natural language is ambiguous, so this description method
is prone to misunderstanding between the test designer and the
test executor.

• Structured form approach. It refers to the method of form cus-
tomization, in which the test content is filled in columns in a pre-
customized form so that the test cases can be understood at a

162    ◾    Embedded Software System Testing	

glance. In the test design phase, this is a frequently used form of
description. It also has the inherent drawbacks of natural lan-
guage descriptions since the content of the form filling is still
natural language.

• Description based on formal methods. This approach mostly
describes only the language of test input, including the genera-
tion of test input data and self-defined data based on formal stat-
utes. The form of the test cases generated in this way depends
on the form of the requirement statute and the algorithm of the
use case generation based on mathematical theory, as its form
is also abstract and incomprehensible to the computer, and the
algorithm is complex and does not facilitate the communication
among testers. In addition, the test data generated based on the
formal statute still needs to be further transformed into a lan-
guage that can be processed by the computer before the test can
be executed.

• Test languages. With the continuous development of automated
testing technology, international testing organizations, i.e., test
tool vendors, have been exploring new techniques for test descrip-
tion languages, and numerous test languages have emerged one
after another with increasingly wide applications. These test lan-
guages can be divided into two categories:

– Specialized test languages, such as TTCN-3, ATLASGOAL,
PLACE, ELATE, and DIMATE.

– Extensions based on existing general-purpose programming
languages such as TeCL, TestTalk, ESSTSL, test scripting lan-
guages based on Basic, C++, Java, Tcl/tk, perl, and python
extensions, etc.

4.2 CHARACTERISTICS OF REAL-TIME EMBEDDED
SOFTWARE TEST DESCRIPTION

4.2.1 Real-Time Embedded Software Testing Features

The characteristics of real-time embedded software determine the spe-
cial nature of its testing. Test methods, test strategies, and test tools have
unique properties that other software does not have. This is reflected in the
following aspects:

Real-Time Embedded Software Automation Test    ◾    163

 1. Highly targeted testing methods
As a component of a large system, real-time embedded systems

often have a wide variety of interfaces and complex types, which
directly leads to the test methods for real-time embedded software
is usually carried out only for a certain type or even a typical sys-
tem and often need to be developed specifically for its supporting
test tools, but these tools are difficult to apply to the testing of other
embedded systems, that is, poor generality.

 2. Large number of test cases and complex situations
Due to the complex cross-linking relationship of real-time embed-

ded systems, generally run in a specific hardware environment, and
often there is real-time communication with the surrounding cross-
linking devices and has strong responsiveness and real-time, which
leads to a large scale of software input, real-time, and timing relation-
ship and complexity, in order to fully test must increase the number
of test cases and improve the quality of test cases.

 3. Special emphasis on system testing
Due to the large amount of hardware information in real-time

embedded software and the high degree of software hardware cou-
pling. Testing the software separately before it is integrated with the
hardware environment is often insufficient. It is often inadequate
(e.g., when the actual operation of the system under test in real-time
feedback and timing relationship is difficult to truly simulate), so the
real effective test is in the real-time embedded system integration
(hardware-software integration of the real environment) after the
system-level testing, and often using software requirements-based
dynamic testing is the main approach.

 4. Dependence on test tools (environment)
System testing of real-time embedded system software must rely

on test tools to provide automated test inputs as well as collect output
information in real time. Therefore, the testing of real-time embed-
ded systems requires a high and dependent test environment.

 5. Strong demand for automated testing
As the application of embedded systems continues to spread, it

often takes less time, cost, and manpower to complete the testing of
a real-time embedded system, especially when the system is upgraded

164    ◾    Embedded Software System Testing	

more frequently and the delivery time is limited, which requires test
cases and test environments with high versatility and reusability, so
there is a strong demand for automated testing, and more and more test
tools (environments) introduce automation test descriptions (scripts).

4.2.2 RT-ESTDL Design Principles

Based on the above analysis, it can be concluded that the real-time embed-
ded software test description language (RT-ESTDL) should follow the fol-
lowing design principles:

 1. Easy for testers to understand and master
The purpose of RT-ESTDL is to provide testers with an intui-

tive, easy to write and easy to maintain test description language for
real-time embedded software emulation testing, so it is necessary to
ensure the simplicity and clarity of RT-ESTDL, with a good design
structure, so that testers can easily understand and master.

 2. Meet the real-time embedded software requirements for real-time
As a specialized test description language for real-time embedded

software automation testing, RT-ESTDL must be able to support the
real-time requirements of real-time embedded software and be able
to handle the description of real-time, concurrent input of test inputs.
It should also be able to support the processing of real-time feedback
from tests during the testing of real-time embedded systems.

 3. With good generality and portability
Real-time embedded software test platforms are often built on top

of real-time operating systems (RTOS) (e.g., VxWorks, μC/OS, and
RT-Linux). The portability of RT-ESTDL can be understood as port-
ing across different testing platforms (or RTOS), meaning that the
test descriptions generated by testers can be run in any running envi-
ronment equipped with the RT-ESTDL language execution system.

 4. With good test platform adaptability
As a more general test description language, RT-ESTDL and its

execution system should have good test platform adaptability and
should ensure that when porting from one test platform to another,
the adaptation to the new platform can be done quickly without or
with only a few changes.

Real-Time Embedded Software Automation Test    ◾    165

 5. Support real-time embedded system cross-linked environment
modeling and inter-device communication

The real-time embedded system under test often exists around the
cross-linked devices. In the real-time embedded software simulation
test, the modeling of the system under test and its surrounding cross-
linked devices should be completed based on the interface control
document (ICD), and the description of the real-time communica-
tion between the devices should be supported during the test.

 6. With better reusability
RT-ESTDL should be designed in a more general programming

language extension, which can make the test description developed
by the tester without or only need to make a few changes to quickly
organize a new round of testing in the case of upgrading the soft-
ware under test, ensuring that the test description has good reus-
ability, facilitating the saving of testing time, and improving testing
efficiency.

 7. With good encapsulation and scalability
RT-ESTDL should have good encapsulation and scalability in the

following two aspects:

• The grammar of the language can be easily extended to better suit
the needs of different real-time embedded software test descrip-
tions according to the different needs of testing.

• RT-ESTDL should encapsulate the test functions commonly
used for real-time embedded software testing so that testers can
describe complex test logic with fewer statements. In addition,
these encapsulated test library functions should be easy for tes-
ters to add or modify, that is, the test function library has good
scalability.

 8. Have good reliability and robustness
As a specialized test language, RT-ESTDL should have good reli-

ability and robustness, as evidenced by:

• Having a complete grammar and semantics;

• Test descriptions written using the RT-ESTDL must be able to
give accurate and reproducible test results and not allow problems

166    ◾    Embedded Software System Testing	

in the test due to defects in the RT-ESTDL and its implementa-
tion system itself;

• When tests are run, avoid illegal exits or terminations if unex-
pected circumstances arise and make every effort to give as many
prompts as possible;

• The mutual independence between test descriptions should be
ensured as much as possible to reduce their dependencies and
prevent the occurrence of abnormal test termination due to the
failure of one or several test descriptions.

4.2.3 Status and Role of RT-ESTDL

In the automated real-time embedded software semi-physical simulation
testing, RT-ESTDL play is the core element that drives the test execution
process. Figure 4.1 gives the status and role of RT-ESTDL in automated
real-time embedded software emulation testing; see Chapter 6 for the spe-
cific real-time embedded software emulation test environment design.

Software under
test document

Equipment

simulation
modeling

Test case
generation

Test
configuration

and
management

Test process
monitoring

RT-ESTDL test description generation

Data
communication

Test initializing

Test
management

dispatch

Test service

Exception

handling

Test
Description
Real-time
execution

I/O

Test
Execution

system

interface

Tested real-time embedded system

Test
development

system

FIGURE 4.1 Status and role of RT-ESTDL.

Real-Time Embedded Software Automation Test    ◾    167

4.3 D ESIGN OF REAL-TIME EMBEDDED SOFTWARE
TEST DESCRIPTION LANGUAGE

In real-time embedded software automation testing, the test description
language is a very critical factor. Compared with the general-purpose
programming language, the test description language is generally imple-
mented based on the extensions and improvements of the general-purpose
programming language, that is, it is extended on the basis of the general-
purpose programming language to add some descriptions and implemen-
tation methods suitable for real-time embedded software testing, such as
the description of the system under test modeling, the control of the test
flow, the description of test cases, real-time, concurrent, and test feedback
processing. The purpose of RT-ESTDL is to provide testers with an intui-
tive, easy to write, easy to maintain dedicated test language for real-time
embedded software simulation testing.

4.3.1 Lexicon of RT-ESTDL

RT-ESTDL mainly refers to C and C++ language in lexicography and
syntax. According to the characteristics of real-time embedded software
testing, it eliminates the language elements not needed for real-time
embedded testing in C and C++ language, introduces object-oriented
thinking, and increases the elements necessary for real-time embedded
software testing, such as adding support for objects to facilitate real-time
embedded software device modeling; allowing testers to customize test
primitives; adding support for avionics bus block type data; adding sup-
port for device communication; and eliminating explicit declaration of
data types so that testers can focus more on the test case description itself.

A brief description of the lexicon of the RT-ESTDL language is given
below (see Appendix 2 for details).

For the language itself (simplified C/C++ language format):

• Global variables, local variables, functions and procedures with
parameters

• Numeric constants, string constants

• C, C++ and shell format comment statements

• include statement, using statement

• if statements, if-else statements

168    ◾    Embedded Software System Testing	

• new statement (for device object construction)

• switch-case statement, for statement, while statement, do statement

• continue, break, return statements

• Common standard library function support (extensible)

• Commonly used arithmetic/bitwise operators, operators

• Support for user-defined functions

For the characteristics of real-time embedded software simulation testing,
on the basis of the above, the following features are introduced:

• Representation and reference to the global clock in the test

• Construction of equipment simulation model

• Description and operation of device simulation models and their
variables

• Communication between device simulation models

• Time waiting function

• Standard signal generation functions, etc.

In addition, all symbols (tokens) of the RT-ESTDL language are shown in
Table 4.1.

4.3.2 Syntax of RT-ESTDL

BNF (Backus-Naur Form) representation is a grammatical representa-
tion commonly used in programming languages nowadays. It was first
introduced by John Backus and Peter Naur to describe the symbol set of
computer language grammar, which can strictly represent the grammar
rules and facilitate the definition of the grammar rules of programming
languages. The RT-ESTDL proposed in this book is based on the general-
purpose language, adding support for bus data types commonly used in
real-time embedded software, increasing the clock description mechanism,
and improving and extending the language grammar to make it more suit-
able for completing real-time embedded software test description. The fol-
lowing only gives the syntax description of RT-ESTDL (please refer to
Appendix 2 for the specific semantics and usage).

Real-Time Embedded Software Automation Test    ◾    169

The syntax description of RT-ESTDL (based on BNF) is as follows:

Terminals:
 identifier
translation-unit:
 (procedure-definition
 | declaration)+
procedure-definition:
 declaration-specifiers? declarator
declaration* block
declaration:
 declaration-specifiers init-declarator% “;”
declaration-specifiers:
 (type-specifier)+
type-specifier:
 (“var”
 | equipemnt-specifier
 | procedure-specifier
 | function-specifier)
equipemnt -specifier:
 (“equipemnt “) (identifier
 | dentifier “::” equipemnt -specifier)
equipemnt variable -specifier:
 equipemnt –specifie “.” dentifier

TABLE 4.1 RT-ESTDL Language Symbol Classification Table

Category Description

Keyword var const procedure include using equipment
static string array object function
resource if else switch for
do while break continue return
case default new bool int
float complex vec2 vec3 vec4
mat2 mat3 mat4

Operator Arithmetic operators: +, -, *, /, power (^), modulo (%), etc.
Relational comparison operators: >, >=, < and <=, sameness comparison
operators = = and! =

Identifier Such as variable names, constant names, procedure, and function
names, the first character must be a letter; underscores are also treated
as letters; upper and lower case letters are sensitive; identifiers can be
of any length

Constant Numeric constants and string constants
Boundary Such as commas, semicolons, and parentheses

170    ◾    Embedded Software System Testing	

procedure-specifier:
 (“procudure “) (identifier? “{“ field-
declaration+ “}”
 |identifier)
function -specifier:
 (“function “) (identifier? “{“ field-
declaration+ “}”
 |identifier)
init-declarator:
 declarator (“=“ initializer)?
field-declaration:
 (type-specifier)+ field-declarator%
field-declarator:
 declarator
 | declarator? “:” constant-expression
declarator:
 (identifier
 | “(“ declarator “)”) (“(“ parameter-type-list
“)”
 |”(“ identifier%? “)”)*
parameter-type-list:
 parameter-declaration% (“, “ “...”)?
parameter-declaration:
 declaration-specifiers (declarator
 | abstract-declarator)?initializer:
assignment-expression
 | “{“ initializer% “, “? “}”
statement:
 ((identifier
 | “case” constant-expression
 | “default”) “:”)* (expression? “;”
 | block
 | “if” “(“ expression “)” statement
 |”if” “(“ expression “)” statement “else”
statement
 | “while” “(“ expression “)” statement
 | “do” statement “while” “(“ expression “)”
“;”
 | “for” “(“ expression? “;” expression? “;”
expression? “)” statement
 | “continue” “;”
 | “break” “;”

Real-Time Embedded Software Automation Test    ◾    171

 | “return” expression? “;”)
 block type:
 (“var”
 | “1553BBLOCK”
 | “ARINC429BLOCK”
 | “ARINC629BLOCK”
 | “RS422BLOCK”
 | “RS232BLOCK”
 | “RS485BLOCK”)
block:
 “{“[block type*]declaration* statement* “}”
expression:
 assignment-expression%
assignment-expression:
 (unary-expression (“=“
 | “*=“
 | “/=“
 | “%=“
 | “+=“
 | “-=“
 | “@=“
 | “@=“
 | “&=“
 | “^=“
 | “
 |=“))* conditional-expression
conditional-expression:
 logical-OR-expression (“?” expression “:”
conditional-expression)?
 constant-expression: conditional-expression
 logical-OR-expression:
 logical-AND-expression (“||”
logical-AND-expression)*
 logical-AND-expression:
 inclusive-OR-expression (“&&”
inclusive-OR-expression)*
 inclusive-OR-expression:
 exclusive-OR-expression (“|”
exclusive-OR-expression)*
 exclusive-OR-expression:
 AND-expression (“^” AND-expression)*
 AND-expression:

172    ◾    Embedded Software System Testing	

4.4.1 Support for Real-Time Embedded Device Modeling

 equality-expression (“&” equality-expression)*
 equality-expression:
 elational-expression ((“==“ | “!=“)
relational-expression)*
 relational-expression:
 shift-expression ((“<“
 | “>“
 | “<=“
 | “>=“) additive-expression)*
 additive-expression:
 multiplicative-expression ((“+” | “-”)
multiplicative-expression)*
 postfix-expression:
 (identifier
 | string
 | “(“ expression “)”) (“[“ expression “]”
 | “(“ assignment-expression% “)”
 | “++”
 | “--”)*
 systemClock: “::”gt
 number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
 letter: a | b | c | … | z | A | B | C | … | Z

4.4 RT-ESTDL SUPPORT MECHANISM FOR REAL-
TIME EMBEDDED SOFTWARE TESTING

According to the extension of UML class diagram in Section 3.3.3.2,
RT-ESTDL uses the technique based on object-oriented thinking to com-
plete the modeling of real-time embedded devices, and testers can use
inheritance and polymorphism to complete the static modeling work of
real-time embedded software and its surrounding cross-linked devices
through the real-time embedded software static modeling framework (see
Figure 3.24). The following is an example of avionics real-time embedded
device modeling based on the application of extended UML class dia-
grams in RT-ESTDL.

As an important component and nerve center system of aircraft, avi-
onics equipment is a core component for aircraft to complete flight atti-
tude control, mission management and weapon management as well as
an important factor to determine the combat effectiveness of warplanes.

Real-Time Embedded Software Automation Test    ◾    173

Avionics software is the computer software applied in the avionics system
to realize the functions of data acquisition, data interpretation, automatic
control and data interaction, which generally has the characteristics of
real-time, embedded, high reliability, and high security.

The modern integrated avionics system is a distributed computer net-
work system based on the aviation data bus. For the subsystems with a large
amount of equipment and complex functions, the secondary integration is
realized through the subsystem control and management computer. The
structure of a typical avionics system and subsystem is shown in Figure 4.2.

It is particularly important to emphasize that the important basis for
avionics static modeling is the ICD between avionics devices, which is the
standard document for avionics data bus interface definition and the basis
for avionics device modeling. The data block description is the typical for-
mat of avionics bus data, which generally includes source device, destina-
tion device, and data update cycle. Each data block also includes several data
elements, and each element has its own format definition and description.
Table 4.2 gives the format and content of a typical avionics system ICD file.

Based on the above analysis, the avionics class (CAVIEqpmt) is intro-
duced in RT-ESTDL for describing avionics devices (derived from the
generic device class CEQUIPMENT), and correspondingly the avion-
ics I/O interface data class CAVIIODATAVAR (derived from the generic

Flight Control

Subsystem

Other

subsystem n

Radar

subsystem

Navigation Control
Computer

Functional

Equipment 1

Functional
Equipment n

Functional

Equipment 2 ……

1553B Bus

Subsystem bus

……

FIGURE 4.2 Typical avionics system architecture.

174    ◾    Embedded Software System Testing	

interface data class CIODATAVAR) is introduced for describing real-
time embedded devices. The avionics bus connection class CAVIIOLINK
is introduced to describe the type of I/O bus connection between real-
time embedded devices (derived from the general bus connection class
CIOLINK). At the same time, C1553BBLOCK, CARINC429BLOCK,
CARINC629BLOCK, CRS422BLOCK, CRS232BLOCK, and other derived
classes are introduced to describe the bus data connection between avion-
ics devices. The static modeling of avionics equipment software derived
based on the real-time embedded software static modeling framework is
shown in Figure 4.3.

Based on the above analysis, the RT-ESTDL description of the static
modeling of a typical combined avionics system inertial/satellite naviga-
tion system I/GNS is shown in Table 4.3.

TABLE 4.2 Format and Content of a Typical Avionics System ICD File

BLOCK NAME: Block Name
SOURCE: Source
DESTINATION: Purpose
COMMUNICATION: Communication format
PRIORITY: Priority
TRANSMISSION: Type of transmission
REFRESH CYCLE: update period
MAXIMUM: Maximum delay
OVERWRITE PERMITTED: Allowed override flag
SYSTEM STATE: System status
INTERRUPT: whether to allow interrupts
SIZE: Size
BLOCK REMARKS: Block description
BLOCK ELEMENTS: Block elements, containing the name of each signal
SIGNAL NAME: Signal name
SIGNAL LABEL: Signal label
SIGNAL TYPE: Signal type
SIGNAL SOURCE: Signal source
DISTRIBUTION: signal distribution
SIGNAL FORMAT: Signal format
SIGNAL RANGE: Signal range
COMPUTATION RATE: Rate of operation
DATA BIT DESCRIPTION: Data bit description
(Example:)
 BIT 0 STATIC-PRESSURE—BU USED
 BIT 1 STATIC-PRESSURE—BU USED
...
ACCURACY: Precision

Real-Time Embedded Software Automation Test    ◾    175

>>>>RRAAVVAATTAADDOI<< OI<< >>>>RRAAVVAATTAADDOII OIIVVAA<<<<

>>>>ttmmppqqEIEIVVAA<<<<>>>>TTNNEEMMPIPIUUQQE<< E<<

>>>>KKNINIL<< L<< >>>>KKNINILILIVVAA<<<<

>>e >>eppyyTTkkccoollBBnnooN<< N<<

>>>>KKCCOOLLBBBB3355551<< 1<<

>>>>KKCCOOLLBB992244CCNINIRRA<< A<<

>>>>KKCCOOLLBB992266CCNINIRRAA<<<<

>>>>KKCCOOLLBB222244SSRR<<<<
... ...

*

1
*

1

FIGURE 4.3 Static modeling diagram of avionics equipment software.

4.4.2 Support for Real-Time Embedded Software Testing
Time Constraints and Concurrent Processing

RT-ESTDL uses real-time scheduling to complete the processing of multi-
ple real-time embedded software test tasks. In addition, the test task action
sequence allows references to the system clock, all of which can ensure
real-time software test time constraints and concurrent processing. The
specific analysis is as follows:

 1. The design of RT-ESTDL is based on the description method of
time-constrained migration equivalence classes, which can better
complete the description of the temporal characteristics of each state
migration in the real-time embedded software testing process.

 2. By using real-time task scheduling algorithm (based on SBRMS
scheduling algorithm, see Section 6.5.3 in Chapter 6), the RT-ESTDL

176    ◾    Embedded Software System Testing	

TABLE 4.3 RT-ESTDL Description of a Typical Avionics System Model

// avioniceqpmt.mdl
using “RT-ESTDL.mdl”
using “aviiodatavar.mdl”
using “1553bBlock.mdl”;

CAVIEqpmt AvionicEqpmt::CEQUIPMENT
{

 BOOL IsSUT; //Whether the system under test
 var Eqpmt_ID; //Device identification
 CAVIIODATAVAR ioDataVar; /IO interface data
 CAVIIOLINK ioLink; / / Bus connection type
 …
 procedure InitEqpmt(ioData, ioLink);
 procedure StartEqpmt()

 procedure SendDataValue (srcEqpmtID,dstcEqpmtID,
ioData, sndVar);
 procedure GetDataValue (srcDevID,ioLink, recVar);
 …
}
/******** The following is the I/GNS model
**************/
// IGNS.module
IGNSMDL :: AvionicEqpmt
{
 IsSUT = TRUE;
 Eqpmt_ID = “IGNS”;
 ioLink.ioType = “MIL-STD-1553B”;
 var APP;
 var WOW;
 1553BBLOCK B_ADIN_01_00;
 1553BBLOCK B_DCIN_00_00;
 1553BBLOCK B_DCIN_01_01;
 1553BBLOCK B_DCIN_01_02;
 . . .
}

Real-Time Embedded Software Automation Test    ◾    177

execution engine can complete concurrent execution between differ-
ent test tasks and can support real-time scheduling of test tasks with
different priority order.

 3. The RT-ESTDL design introduces a reference to the system (global)
clock and a time waiting mechanism, such as by calling the encap-
sulated function GetCurTestTime(), which can be obtained to obtain
the current global clock value (since the start of the test timing),
by calling the function wait(). In this way, the test process can be
ensured that the clock is unified and coordinated, ensuring that the
test process is fully controllable.

 4. The design of the RT-ESTDL execution engine allows users to cus-
tomize the execution priority of online test tasks, so that the actual
requirements of testers can be met to the maximum extent while
ensuring minimal interference with the running timing of the test
execution system.

4.4.3 S upport for Real-Time Communication of Real-
Time Embedded Device Models

In the RT-ESTDL design, after the modeling of each device model is com-
pleted, if each device model is visible and accessible to each other, the
real-time communication between devices can be completed by means
of function calls, and its implementation process is shown in Figure 4.4.

1553B bus

Directly SET INS data

transmission control state word

1553B bus

Directly operate MC data

set flight parameters

Simulation

model

MC

Simulation
model

I /GNS

Simulation

model

FCS

Directly set FCS

control flight attitude

FIGURE 4.4 Real-time embedded device model real-time communication schematic.

178    ◾    Embedded Software System Testing	

The advantage of this approach is that the interaction is direct, simple, and
fast, which can better meet the real-time communication and simplify the
complexity of the system.

4.4.4 S upport for Reuse of Existing Device
Models and Test Descriptions

RT-ESTDL supports pre-compilation mechanism, which can well realize
the reuse of real-time embedded device models and existing test descrip-
tions. Through this reuse, the existing test resources can be reused to the
maximum extent to improve test efficiency and shorten test time. Specific
analysis is as follows:

 1. The using statement can pre-include the established real-time embed-
ded device model to realize the reuse of the existing device model.
In addition, in this case, if the tester wants to develop a new device
model based on the existing model, he only needs to make a few
changes to complete the development of a new device model, which
greatly improves the efficiency of modeling.

 2. The include statement can be used to pre-include the test descrip-
tion sequence that has already been created. Similarly, the tester only
needs to make a few changes to complete the programming of a new
test statement sequence.

4.5 SUMMARY
Based on the formal testing theory in Chapter 3, this chapter presents
the characteristics and design principles of real-time embedded software
test description and comprehensively summarizes the common testing
methods for real-time embedded software. The concept of generic real-
time embedded software test tasks is given, and on this basis, the real-time
embedded software test description language is designed and implemented,
and the grammar and semantics of the language are studied, as well as the
analysis of the real-time embedded software test support mechanism.

179

C h a p t e r 5

Testing Technology
of Intelligent
Terminal Application
Software System

Android application is one important class of embedded software,
 especially for consumer electronics devices. The huge market needs,

the limited time-to-market pressure, and the diverse hardware platforms
make it challenging to ensure the quality of Android applications. In this
chapter, we will cover typical testing techniques for Android applications,
including test case generation, regression testing, and stress testing.

5.1 BASICS FOR ANDROID APPLICATIONS
5.1.1 Android Operating System

Android operating system is an open-source mobile operating system
based on Linux released by Google on November 5, 2007. It mainly tar-
gets mobile devices such as mobile phones and tablets. Android operating
system was originally developed by Andy Rubin to support mobile phones
since 2003 in the USA. In 2007, Google and 84 companies including hard-
ware manufacturers, software providers, and telecommunication provid-
ers build the open handset alliance and released the improved Android

DOI: 10.1201/9781003390923-6

https://doi.org/10.1201/9781003390923-6

180    ◾    Embedded Software System Testing

system. The alliance supports the Android system and its applications.
Then, Google released the source code of Android under the Apache
license.

In 2008, Google released Android 1.0. The first Android mobile phone
is released in October 2008. Android operating system has extended its
usage into many consumer electronics areas such as TV, digital camera,
game, and smartwatch. In the first quarter of 2011, the mobile market
share of Android exceeded the Symbian system to be the top mobile oper-
ating system. In the fourth quarter of 2013, the market share of Android
platform reached 78.1%.

The Android operating system has evolved into a whole software stack
for mobile devices including the OS kernel, middleware, UI framework,
and applications. As shown in Figure 5.1, the architecture of Android
operating system includes the application layer, application framework,
libraries, runtime, and Linux kernel.

The application layer is the top layer of Android operating system. It
is used to interact with the end users. The application layer includes the
built-in application of Android and third-party applications. The end
users can use these applications to make calls, write notes, watch videos,
and play games. The end users can install or uninstall these applications
with flexibility.

The application framework layer is under the application layer. It pro-
vides a different system, API, for developers for building applications. The
main modules of the application framework layer are:

• Activity Manager: Managing the life cycle of different applications.

• Window Manager: Managing all windows applications.

• Content Provider: Managing the sharing of content among
applications.

• Package Manager: Managing the installation, upgrade, and uninstall
of applications.

• Notification Manager: Managing the notification of system.

The system runtime layer lies between the application framework layer
and the Linux kernel layer, and it is composed of the system libraries
and Android Runtime. The system library contains the Surface Manager,
SQLite Library, Media Framework, OpenGL/ES library, and FreeType.

Testing Technology of Intelligent Terminal Application Software System    ◾    181

Application

Home Contacts Phone Broswer ...

Application Framework

Activity

Manager

Content

Provider

Notification

Manager

wwooddnniiWW View

rreeggaannaaMM System

Package

Manager

Telephony

Manager

Resource

Manager

Location

Manager

XMPP

Service

Application Framework

Surface Manager

OpenGL/ES

SGL

FreeType

SSL

kkrroowweemmaarrFFaaiiddeeMM SQLite

WebKit

Libc

Android Runtime

sseeiirraarrbbiLiLeerrooCC

Dalvik Virtual Machine

Linux Kernel

Display

M rergevainraD

Bluetooth

DriverM rereeggggvggavvinvviirnniiarrDMMaa

Binder(IPC)

Driver

Flash Memory

Driver

USB

Driver

Keypad

Driver

Wifi

Driver

Audio

Driver

Power

Management

DriverDriver

Camera

FIGURE 5.1 Android system architecture diagram.

It is responsible for 2/3D drawing, multimedia, databases, etc. The Android
Runtime is composed of the core library and the Dalvik virtual machine.
The former is implemented in Java to provide core APIs for application
development. The latter is a register-based Dalvik virtual machine to
ensure each application has its independent process without interfering
with other applications.

The Linux kernel is at the bottom of the Android system. The kernel
layer provides drivers for Android mobile devices. It also provides security
management, power management, memory management, process man-
agement, network driver, graphics card driver, etc.

182    ◾    Embedded Software System Testing

5.1.2 Android Development Environment

Android application development relies on the following tools:

• Android SDK (Software Development Kit): the API libraries pro-
vided by Google for application development.

• Android Studio: the integrated development environment for
Android application development provided by Google.

5.1.3 Core Components for Android Application

Android contains four components, including Activity, Service, Content
Provider, and Broadcast Receiver.

Activity is the component composing of basic user interface, and it
interacts with end users through UI interfaces to fulfill certain tasks.
Different activities can communicate with each other through Intent. One
application can contain one or more activities.

Service has no independent process, and it relies on the application cre-
ating the service. Service also has no user interface, so it can continue work
when switched to background.

Content Provider realizes data sharing among applications. It also pro-
vides a security mechanism to protect the data accessed.

Broadcast Receiver receives the broadcast notifications from built-in
and third-party applications.

5.1.4 Android Emulator and ADB Tools

The Android Emulator simulates Android devices on your computer so
that you can test your application on a variety of devices and Android API
levels without needing to have each physical device. The emulator offers
the following advantages:

Flexibility: In addition to being able to simulate a variety of devices
and Android API levels, the emulator comes with predefined configura-
tions for various Android phones, tablets, Wear OS, and Android TV
devices.

High fidelity: The emulator provides almost all of the capabilities of
a real Android device. You can simulate incoming phone calls and text
messages, specify the location of the device, simulate different network
speeds, simulate rotation and other hardware sensors, access the Google
Play Store, and much more.

Testing Technology of Intelligent Terminal Application Software System    ◾    183

Speed: Testing your app on the emulator is in some ways faster and
easier than doing so on a physical device. For example, you can transfer
data faster to the emulator than to a device connected over USB.

Android Debug Bridge (adb) is a versatile command-line tool that lets
you communicate with a device. The adb tool is included in the Android
SDK Platform-Tools package. The adb command facilitates a variety of
device actions, such as installing and debugging apps, and it provides access
to a Unix shell that you can use to run a variety of commands on a device.
It is a client-server program that includes three components. A client is
used to send commands. The client runs on your development machine.
You can invoke a client from a command-line terminal by issuing an adb
command. A daemon (adbd) can run commands on a device. The daemon
runs as a background process on each device. A server is responsible for
managing communication between the client and the daemon. The server
runs as a background process on your development machine.

5.1.5 Android UI

The base class for all elements in Android UI (User Interface) are class
View or class ViewGroup. The View class draws the UI contents for inter-
action with end users. The A ViewGroup is a special view that can contain
other views (called children). The view group is the base class for layouts
and view containers. All the widgets in the view form a tree-style hierar-
chical layer.

Widget is an important concept for Android UI design, and it is the
basic element of Android application UI. The Input widget is used to
interact with the end users to acquire user input information. As shown
in Figure 5.2, other frequently used widgets include Button, Check Box,
TextField, Slider, and Switch Button.

Button

Text field

OFF

ON

FIGURE 5.2 Basic widgets in Android UI.

184    ◾    Embedded Software System Testing

Layout is an important concept in Android UI design. It is used to define
the user interface that holds the UI controls or widgets that will appear
on the screen of an Android application or activity screen. A user can define
the layout of an Android application in two ways. One is to use XML file to
define UI layout while another is to directly program the UI objects with
code. Using XML file to define UI layout is preferred because the UI and
program logic can be decoupled. Developers can build an application for
different Android versions and different UI layout, which can significantly
improve the reusability of the code.

The Android system will receive input events when the end users have
interacted with the application user interface. There are a set of callback
functions in the View class to handle Android UI events. Handling events
based on listener mechanism is the recommended way in the Android
system. The core concepts are Event Source, Event, and Event Listener.
The Event Source are widgets user can interact to trigger events, includ-
ing buttons, slide bars, and images. The Events are the messages generated
through the interaction between the user and the UI widget. And the event
listeners are the callback interfaces provided by the Android View class,
which are responsible for handling the events. For example, the onClick()
method is within the View.OnClickListener. When an end user clicks a
button, it will be invoked.

5.1.6 Android Log System

Android Log system provides the logging facility for Android applica-
tions. Logging is useful for Android application development, testing,
and debugging. Developers can use the logging system to locate the bugs
within the application. Each line of log contains the Tag, Time stamp, Log
level, and Log info.

The Android Log can be classified into six levels: Verbose, Debug, Info,
Warn, Error, and Assert. Verbose is at the lowest level in the logging system
with the most complete information for diagnosis. Debug level is used to
print debugging information and is only valid for the Debug version. The
Info level prints the common reminder information. The Warn level can
print warning information to remind the developers of possible program-
ming bugs. The Error level is of relatively higher priority, and it is used to
print the error message during program crash. For example, the exception
information is captured in the try-catch mechanism. Assert level is the
highest level in the logging system, and it will output information related

Testing Technology of Intelligent Terminal Application Software System    ◾    185

to fatal errors. The size of log can be very large: an application execution
usually generates MegaBytes of logs.

The logs can also be classified into Application log, Event log, and
System log based on usage. The Android system generally uses System log
to differentiate from the application logs.

5.1.7 Code Coverage for Android Application

Code coverage is an important metric for software testing. During testing,
we often care about whether the source code is covered. The percentage of
code covered during execution is called code coverage rate. When talking
about code coverage for source code, we may have different granularities:

• Line Coverage (Statement Coverage): It checks whether each execut-
able statement in the program has been covered during execution.
Line coverage is the most frequently used metric.

• Branch Coverage: It checks whether each branch of the program is
covered.

• Function Coverage: It checks whether each function of the program
is covered.

 Here we introduce some code coverage tools for Android
applications:

 1. Emma is an open-source code coverage tool for Java. Emma is
implemented in Java and can be integrated into IDEs such as
Eclipse, Android Studio easily. Emma performs code instrumen-
tation at the bytecode level. Whenever the instrumented code is
executed, it will send coverage information to BroadcatReceiver,
which in turn is responsible for writing the code coverage infor-
mation into the coverage.cc file. Emma can log the code coverage
information at the statement, branch, and function level.

 2. Ella is another open-source Android application code coverage
tool. Different from Emma, Ella performs instrumentation at the
bytecode level. Therefore, it can be applied to collect code cov-
erage information on third-party Android application without
source code. Ella is written in Python and can be used with com-
mand-line user interface. The code coverage of Emma is relatively
coarse, and it can only get function-level code coverage.

http://coverage.cc

186    ◾    Embedded Software System Testing

 3. Jacoco is developed by the same team as Emma. Jacoco can be
integrated into IDEs such as Eclipse, Gradle, and Maven. Similar
to Emma, Jacoco also performs instrumentation at the byte-
code level and returns the code coverage information through
BroadcastReceiver. Jacoco supports the collection and generation
of code coverage information at instruction, line, and branch level.

 4. Clover is a code coverage tool for Java developed by Cenqua.
Clover is based on source code instrumentation. Apart from
reporting code coverage information, Clover can also track the
change of code coverage such that developers can track whether
the new test cases can trigger uncovered code before.

5.1.8 Android GUI Testing Frameworks

 1. UI Automator testing frameworks
UI Automator is a UI testing framework suitable for cross-app

functional UI testing across system and installed apps. The UI
Automator APIs let you interact with visible elements on a device,
regardless of which activity is in focus, so it allows you to perform
operations such as opening the Settings menu or the app launcher in
a test device. Your test can look up a UI component by using conve-
nient descriptors such as the text displayed in that component or its
content description. The UiAutomator Viewer provides a set of APIs
for dynamically querying the user interface of applications. The APIs
can retrieve the UI widget tree of the application under test to get the
detailed UI state. Furthermore, the class UiDevice can get the state
information of the target device and change device state by sending
key events. UiAutomator is useful to serve as the underlying library
to develop a new Android testing framework.

 2. Instrumentation testing framework
An instrumentation test provides a special test execution environ-

ment where the targeted application process is restarted and initial-
ized with basic application context, and an instrumentation thread
is started inside the application process VM. Your test code starts
execution on this instrumentation thread and is provided with an
Instrumentation instance that provides access to the application
context and APIs to manipulate the application process under test.

Testing Technology of Intelligent Terminal Application Software System    ◾    187

The instrumentation framework can create test cases, send UI events
and system events to Android application, check the runtime state
of application, and control the lifecycle of Android application.
Different from black-box testing techniques, instrumentation frame-
work can directly invoke the method of UI widgets and modify the
attributes of widgets. The limitation of the Instrumentation frame-
work is that it requires the source code of the application under test-
ing. This makes it more suitable for developer testing rather than
third-party testing.

5.2 TEST CASE GENERATION TECHNIQUES
FOR ANDROID APPLICATIONS

When performing Android application testing, designing the test cases is
the most time-consuming activity. A complex application usually involves
many different usage scenarios. Therefore, it may require nontrivial efforts
to design test cases to cover even the most important scenarios. To improve
the efficiency of testing, we need effective automatic test case generation
techniques. A large number of automatic test case generation techniques
for Android applications are based on GUI state traversal. These tech-
niques differ from each other in terms of GUI state equivalence criteria,
the state search strategy, and waiting time between two events.

However, the effect of different factors used in a GUI traversal algo-
rithm has not been systematically explored. In this section, we report a
controlled experiment on 33 real-world applications to expose their real
failures to systematically study three major factors that are commonly
observed in testing tools for this class of applications. They include the
notion of GUI state equivalence, the state search (or exploration) strategy,
and the amount of time to wait between two input events. Our experimen-
tal results clearly show that different notions of GUI state equivalences
have significantly different effects on failure detection rate and code cover-
age, randomized search is comparable to systematic search, and different
choices of waiting time strategies do not make significant differences in
terms of testing effectiveness.

5.2.1 Test Case Generation Tools for Android Application

There are many popular test development environments and tools, such
as MonkeyRunner, Robotium, and UIAutomator. These test development
platforms usually provide a set of APIs for the testers to write test scripts
based on their own test requirements.

188    ◾    Embedded Software System Testing

MonkeyRunner is a testing tool within the Android SDK. It provides API
interfaces in Python for the testers to interact with the device, to simulate
user inputs, and to get testing results for verification. The script is inter-
preted by the MonkeyRunner to interact with the application under test.
Moreover, it also provides a mechanism to capture screens and compare
images to support the test oracle procedure. Robotium uses the Android
instrumentation framework to support black-box automated testing by
extending those instrumentation classes. UIAutomator allows testers to
craft test scripts to send input events to UI widgets rather than screen
coordinates. Appium uses the WebDriver protocol to test iOS, Android,
and Windows apps. It also supports several programming languages so
that testers can easily adopt it for use.

There are also many popular automatic Android test case generation
tools.

Monkey is a widely used stress-testing tool within the Android plat-
form. It can generate pseudo-random sequences of user events to an app
under test. Furthermore, many improved fuzzing tools over Monkey are
also widely used. They either use widget-level interaction or have enhanced
failure diagnosis ability.

The SwiftHand tool aims at maximizing the code coverage of the appli-
cation under test while minimizing the number of restarts during testing
to save testing time. It builds a finite state model of the app for exploration
to generate inputs dynamically. During the testing process, the tool will
also dynamically improve the model based on the testing data.

A3E is a GUI traversal–based test generation tool with two comple-
mentary exploration strategies: A3E-Depth-First and A3E- Targeted. The
former strategy performs DFS on a dynamic model of the app where the
dynamic model defines each activity as a distinct GUI state. The latter
strategy is more complicated. It applies static taint analysis to build an
activity transition graph of the app and then uses the graph to efficiently
generate intents.

Dynodroid realized a randomized exploration strategy. It is able to gen-
erate system events relevant to the app through analysis. It can also either
generate events that have been least frequently used or take the contexts
into account. In other words, it can bias toward those events that are rel-
evant in selected contexts.

Stoat is a guided, stochastic model-based GUI testing technique for
Android applications. It combines static analysis and dynamic analysis to
first build the GUI model of the application. Then it mutates and refines

Testing Technology of Intelligent Terminal Application Software System    ◾    189

the stochastic model to guide the test generation process. The results show
that the technique is effective to achieve high code coverage and to trigger
crash for Android application testing.

Sapienz is a search-based test case generation tool. It takes failure detec-
tion rate, code coverage, and test case size as factors in optimizing its test
cases during the search process. Their evaluation results show that Sapienz
can be effective in generating smaller test cases and these test cases can
result in high failure detection rate and high code coverage.

ACTEve is a testing tool based on dynamic symbolic execution. Based
on source code instrumentation, it performs concrete and symbolic exe-
cution to systematically generate test inputs. However, the requirement
to instrument the application limits its applicability to application with
source code only. Furthermore, it can only output test cases with 4 input
events at most due to the state explosion problem.

PUMA [11] is an extensible framework for dynamic analysis and GUI
traversal–based test case generation. Both its dynamic analysis component
and its component for the exploration of a UI transition model can be
customized.

Figure 5.3 shows the overview of the PUMA workflow. Developers
should first provide a PUMAScript code and the binary code of an Android

interpreter

PUMA scriptPUMA script Original AppOriginal App

instrumenter

UIAutomator

Instrumented

APP

Instrumented

APP

Monkey

PUMA

FIGURE 5.3  PUMA workflow.

190    ◾    Embedded Software System Testing

application to PUMA where PUMAScript is a language implemented
as a Java extension. Next, the PUMA interpreter interprets the given
PUMAScript code, and translates the code instructions into monkey-
specific directives (via UIAutomator) and app-specific directives. PUMA’s
app instrumenter statically analyzes the application to determine the parts
of the code relevant to analysis and instruments of the application. The
output is an instrumented version of the given application that satisfies
the app-specific directives specified through the given PUMAScript code.
Finally, a programmable monkey configured with the monkey-specific
directives specified in the PUMAScript code executes the instrumented
version of the application. Upon the completion of the program execution,
PUMA generates logs which contain outputs specified in the app-specific
directives, as well as outputs generated by the programmable monkey.

5.2.2 A GUI Traversal–Based Test Case Generation Framework

Table 5.1 presents the pseudo-code of a general GUI Traversal–Based
Test Case Generation Framework, which is also proposed by PUMA.

TABLE 5.1 Generic Algorithm for Test Generation Based on GUI

Algorithm 5.1 Generic GUI Exploration-Based Test Case Generation Framework of PUMA

1: while

not all apps have been explored do
2: pick a new app and start the app
3: S←empty stack
4: push initial page to S
5: while S is not empty do
6: pop an unfinished page si from S
7: go to page si
8: pick next clickable UI element from si //

Factor 2: Search strategy
9: perform the click
10: wait for next page sj to load //

Factor 3: Waiting time
11: flag←sj is equivalent to an explored page //

Factor 1: State equivalence
12: if not flag then
13: add sj to S
14: update finished clicks for si
15: if all clicks in si are explored then
16: remove si from S
17: if S is empty then
18: terminate this app

Testing Technology of Intelligent Terminal Application Software System    ◾    191

The underlined part is the configuration points (i.e., parameters stated in
Section I), which can be extended in the test case generation framework.
In the algorithm, s represents a GUI state and S represents the set of GUI
states. Each state is associated with a set of clickable UI elements. If there is
any clickable UI element not yet receiving an input (click) event, the state
is called unfinished, otherwise, finished.

The algorithm first selects an application from the application set under
the test and starts the application. Then, it puts the initial page of the appli-
cation into the GUI state set, which is empty initially. Next, it selects an
unfinished state from the GUI state set, picks a clickable UI element, and
clicks on it. Third, it waits for a certain period of time so that the next UI
page can be loaded, then compares the new state with those explored states
one by one to determine whether the new state is equivalent to an explored
state. If there is no match, the algorithm puts this new state into the GUI
state set. If all the clickable UI elements have been explored by clicking
on them, the finished state is removed from the GUI state set. The above
procedure then repeats until the state set is empty.

The code lines (lines 8, 10, and 11) with underlined comments in the
algorithm are the locations of three major factors to be studied in our con-
trolled experiment. In the next section, we describe our design of the fac-
tor levels of these design factors at these three configuration points.

 1. GUI state equivalence strategy
The first design factor to be studied is how to characterize a GUI

state and how to consider two GUI states to be equivalent.
We aim to explore the factor levels that have been proposed sepa-

rately in different previous works. The main purpose is to critically
examine whether there is any significant difference in test effective-
ness, which, to the best of our knowledge, the present work is the first
one to report it.

Specifically, three state equivalence criteria chosen in our con-
trolled experiment as three factor levels of state equivalence are as
follows: the cosine similarity used by the DECAF and PUMA, the UI
hierarchy used by SwiftHand, and ActivityID used in A3E.

 2. Cosine similarity strategy
In DECAF, a feature vector is used to represent a UI hierarchy.

This feature vector extracts the type, the level in the DOM tree and
the text from each visible UI element in the DOM tree of the UI

192    ◾    Embedded Software System Testing

hierarchy. For instance, a button can be expressed as (Button@2,
“red”, “Dial”) in the feature vector, which represents that the UI ele-
ment is a red button with text “Dial” at level 2 of the DOM tree of the
UI hierarchy. A state is a set of UI hierarchies that every pair of UI
hierarchies in the same state are similar to one another based on the
cosine similarity coefficient with a default threshold (0.95) used by
PUMA. In this paper, the cosine similarity is expressed by the eigen-
vectors of the UI widgets. We also adopt the same default threshold
in our controlled experiment.

As shown in Algorithm Table 5.2, the type of the widget (Type),
the level of the control within the DOM tree, the sequential number
of the widget within all widgets of the same type in the same level,
and the text of the widget are used as one dimension of the vector.
The comparison of states uses cosine similarity of vectors. Suppose
we have two vectors representing two GUI states: V v= …0 1, ,v v2 , vn
and U u= …0 1, ,u u2 , un . The cosine similarity is calculated as

n
 ne() ∑ ∑ n n

Cosi V U, = × /v u v u2 ∑ 2 
i i  i i

i= =1 1i i=1 


The value of cosine similarity lies between [−1,1]. When its value
is close to 1, the two states are considered equivalent. We use a

TABLE 5.2 Vectorization Algorithm of GUI State

Algorithm 5.2 Vectorization Algorithm for GUI State

1.

 node←get root node in current state
2. L←empty set
3. while node is not null do
4. type←node’s classname
5. level←node’s height in DOM tree
6. count←number of the node of the same type at

current level
7. text←node’s text
8. keyMatch←string of type@level@count@text
 //build a string with type, level, count, and text
9. put keyMatch into L
10. node←current node’s childnode
11. end-while
12. return current node set L

Testing Technology of Intelligent Terminal Application Software System    ◾    193

threshold 0.95 to determine whether two states are equivalent or not.
The algorithm to calculate cosine similarity is shown in Table 5.3.

 3. Jaccard strategy
Based on the feature vector representation of the GUI state as

Cosine, we can calculate the distance between two GUI state with
Jaccard similarity. Given two feature vector V = <v1,v2, …, vn > and
U = <u1,u2, …, un > , the Jaccard similarity is defined as:

 Jaccard()V U, /= ∩V U V U∪

The Jaccard similarity gives a value in the range from 0 to 1. The
value 1 means the two vectors are exactly the same. In our controlled
experiment, we also set the threshold value as 0.95. The algorithm to
calculate Jaccard similarity is shown in Table 5.4.

 4. Hamming strategy
Given the feature vector representation of the GUI state such as

Cosine, we can calculate the distance between two GUI state using
the Hamming distance. Given two feature vector V = < v1,v2, …, vn >

TABLE 5.3 Algorithm for Calculating Cosine Similarity

Algorithm 5.3 Cosine Similarity Algorithm

1. get state s2 and s1
2. U←empty set
3. feature←s1’s node set //Vector for state s1
4. feature2←s2’s node set //Vector for state s2
5.

 put union elements in feature and feature2 into U //
U is the union of s1 and s2

6. N1,N2,dot ← 0
7. while U has next element do
8. int v1 ← (if feature has the element)? 1 : 0
9. int v2 ← (if feature2 has the element)? 1 : 0
10. dot ← sum of dot and v1*v2
11. N1 ← sum of N1 and v1*v1
12. N2 ← sum of N2 and v2*v2
13. end-while
14. cosine←Cosine similarity calculation(dot / (sqrt(N1)

* sqrt(N2))) //Cosine Similarity
15. return cosine

194    ◾    Embedded Software System Testing

and U = <u1,u2, …, un >, their Hamming distance is the number of
positions where the two feature vectors are different. We normalized
the Hamming distance in between 0 to 1 after distance calculation.
We set the threshold value as 0.95 for Hamming distance in this
work (Table 5.5).

 5. UI Hierarchy strategy
For UI hierarchy strategy, a GUI state is represented by the

hierarchical structure of its widget tree without considering the
detailed properties of GUI widgets. Each GUI widget in a UI hier-
archy is modeled by its widget type. For instance, a textbox wid-
get located at the third level in the DOM tree of a UI hierarchy is
represented as “TextBox@3”. Two GUI states are equivalent if their
corresponding vectorized widgets tree representations are identi-
cal (Table 5.6).

The GUI state similarity algorithm based on the UI hierarchy
strategy is shown in Table 5.7.

TABLE 5.4 Algorithm for Calculating Jaccard Similarity

Algorithm 5.4 Similarity Calculation for Jaccard Similarity

1:

get state s2 and s1
2: U←empty set
3: feature←s1’s node set //Vector of State s1
4: feature2←s2’s node set //Vector of State s2
5: put union elements in feature and feature2 into U

//U is the union of s1 and s2
6: N1,N2,dot ← 0
7: while U has next element do
8: int v1←(if feature has the element)? 1 : 0
9: int v2←(if feature2 has the element)? 1 : 0
10: dot ← sum of dot and v1*v2
11: N1 ← sum of N1 and v1*v1
12: N2 ← sum of N2 and v2*v2
13: end-while
14: jaccard←Jaccard calculation(dot / (N1 + N2

- dot)) //Calculating Jaccard Similarity
15: return jaccard

Testing Technology of Intelligent Terminal Application Software System    ◾    195

	

	

 6. ActivityID strategy
If the ActivityIDs of two GUI states are the same, then the two

states are deemed equivalent. ActivityID is the identifier of each
activity in Android OS and this notion of GUI state equivalence is
easy to implement. For instance, the ActivityID of an activity can be

TABLE 5.5 Similarity Calculation for Hamming Strategy

Algorithm 5.5 Similarity Calculation for Hamming Strategy

 1:

get state s2 and s1
2: U←empty set
3: feature←s1’s node set //Vector of State s1
4: feature2←s2’s node set //Vector of State s2
5: put union elements in feature and feature2 into U //

U is the union of s1 and s2
6: N1 ← 0
7: N2 ← U’s length
8: while U has next element do
9: int v1←(if feature has the element)? 1 : 0
10: sint v2←(if feature2 has the element)? 1 : 0
11: if v1 equals v2 then
12: N1 ← N1 + 1
13: end-while
14: ham←Hamming normalization (N1/N2)
15: return ham

TABLE 5.6 Vectorization Algorithm of UI Hierarchy Strategy

Algorithm 5.6 Vectorization Algorithm of UI Hierarchy strategy

1: node←get root node in current state
2: L←empty set //L stores all the nodes information for

current state
3: while node is not null do
4: type←node’s classname
5: level←node’s height in DOM tree
6: count←number of the node of the same type at

current level
7: key←string of type@level@count //

build a string with type, level, and count
8: put key into L
9: node←current node’s childnode
10: end-while
11: return current node set L

 �

196    ◾    Embedded Software System Testing

returned by getCurrentActivityName() in PUMA, and a string com-
parison of two ActivityIDs can determine the equivalence. When
using ActivityID to determine the equivalence of GUI states, the
number of states within the GUI transition graph will be very small
for simple applications.

	 7.	State search strategy
Search strategy determines the order of widgets within a GUI

state to interact with. We can construct the widget tree by collecting
all clickable widgets reachable from the root widget. As presented
in Figure 5.4, different orders of interacting with these widgets in

TABLE 5.7  Similarity Calculation for UI State Hierarchy

Algorithm 5.7 Similarity Calculation for UI State Hierarchy

1: get state s2 and s1
2: feature←s1’s node set //Vector of State s1
3: feature2←s2’s node set //Vector of State s2
4: U←empty set
5: �put union elements in feature and feature2 into U //

U is the union of s1 and s2
6: while U has next element do
7: int v1←(if feature has the element)? 1 : 0
8: int v2←(if feature2 has the element)? 1 : 0
9: � if v1 equals v2 then //The two states are

equivalent when the two vector are equal
10: continue
11: else return false
12: end-while
13: return true

n0

n1 n2

n3 n4 n5

FIGURE 5.4  An exemplified GUI widget tree.

Testing Technology of Intelligent Terminal Application Software System    ◾    197

the same widget tree determine the traversal order of the GUI state
model. For instance, upon clicking the chosen widget, the app under
test may transit to a new or an existing state, which will be the next
GUI state to explore.

Note that the target of the whole test case generation algorithm is
the traversal of all clickable widgets. Different search strategies (BFS,
DFS, and Random) will only affect the order of clickable widgets to
traverse. All clickable widgets will be traversed based on the test case
generation algorithm, finally.

 8. BFS strategy
Table 5.8 presents the BFS search strategy. In our study, our tool

traverses the GUI widget tree with a queue data structure. Firstly,
the algorithm enqueues the root node into an empty queue. Next, it
deques the first widget and inserts it into the list ret. Then, it enqueues
the children of this widget into the queue. The process repeats until
the queue becomes empty. Finally, the returned ordered list deter-
mines the order of the widgets to interact with the corresponding
GUI state. Figure 5.2 presents an exemplified GUI widget tree where
nodes denote clickable widgets while edges denote their parental
relationship. For BFS traversal, n0 enqueues first. Then, it is moved
from the queue to the returned list. Next, n1 and n2 are put into the
queue and then moved to the list in turn. Finally, n3, n4, and n5 are
put into the queue and then moved to the list in turn.

TABLE 5.8 BFS Strategy

Algorithm 5.8 BFS Strategy

1. get root clickable UI element in current app state
2. Q←empty queue
3. ret←empty list as clickable UI element list //

ret stores the list of clickable UI widget
4. put root into Q
5. while Q is not empty do
6. qto←queue Q’s head element
7. take qto, add it to clickable list ret
8. put the children clickable UI elements of qto into Q
9. end-while
10. return current clickable list ret

198    ◾    Embedded Software System Testing

9. DFS strategy
The DFS next-click algorithm is presented in Table 5.9. This algo-

rithm is similar to the BFS algorithm, except that it uses a stack
instead of a queue. We also use the tree in Figure 5.2 for illustration
purpose: it first places n0 into the stack. Then, it clicks on n0 and pops
it out from the stack. Next, it places n1 into the stack followed by
clicking n1 and popping it out from the stack. The processing on n3,
n4 and n5 are similar. Finally, the algorithm places n2 into the stack
and clicks n2.

 10. Random strategy
The Random Strategy just randomly select one widget from the set

of operable widgets in the current Activity to click. The implementa-
tion of random search strategy is straightforward with the support
of Java APIs.

 11. Waiting time strategy
The waiting time factor determines the time to wait between send-

ing two consecutive input events. Different waiting times may result
in different following up GUI states to interact with. One option is
to wait until the next GUI state is stable, while the other options are
setting fixed time intervals for waiting. The choice of waiting time
is a trade-off. On one side, a short waiting time may lead to unnec-
essary ANR (application not responding) or unexpected application

TABLE 5.9 Deep First Search

Algorithm 5.9 Deep First Search Strategy

1. get root clickable UI element in current app state
2. S←empty stack //Use stack to realize DSF
3. ret←empty list as clickable UI element list //

ret stores the list of clickable UI widget
4. push root into S
5. while S is not empty do
6. sto←the top element of stack S
7. pop sto, add it to clickable list ret
8. push the children clickable UI elements of sto into S
9. end-while
10. return current clickable list ret

Testing Technology of Intelligent Terminal Application Software System    ◾    199

behaviors. On the other side, a long waiting time may waste precious
testing time.

In this empirical study, we choose four typical factor levels of
waiting time because they were used in existing GUI traversal–based
test case generation tools. The first one is to use the waitForIdle()
method of the UIAutomator API in PUMA, whose functionality is to
wait until the execution of the app becomes idle. This API call checks
nothing notable on the GUI happening for a certain amount of time.
We refer to this strategy as wait-for-idle.

Other Android testing tools adopt different strategies for tim-
ing control. In our controlled experiment, we studied the following
waiting time periods: (1) 200 ms as in Shauvik et al. to control the
Monkey tool in their experiment, (2) 3000 ms as in ACTEve, and
5000 ms as in SwiftHand. We refer to them as wait200 ms, wait3000
ms, and wait5000 ms, respectively, and collectively call them as
wait-for-a-while.

 12. Summary of strategies
Table 5.10 presents a summary of the factor levels for each fac-

tor studied in this work. For GUI state equivalence, the 5 levels
are Cosine, UI hierarchy, ActivityID, Jaccard, and Hamming. For
search strategy, the 3 levels are BFS, DFS and Random. For waiting
time, the 4 levels are waitForIdle, wait200 ms, wait3000 ms, and
wait5000 ms.

Our experiments have revealed several interesting results for the
choice of factor levels. First, the choice of state equivalence can cause
StateTraversal techniques to produce significantly different test-
ing effectiveness. Second, applying Random and applying BFS or DFS on
the same widget trees can be comparable in terms of testing effectiveness.

TABLE 5.10 Three Factors and Their Levels

Factor Level State Equivalence Search Strategy Waiting Time

0
1
2
3

Cosine Similarity
UI Hierarchy
ActivityID
Jaccard

BFS
DFS
Random
—

waitForIdle
wait200 ms
wait3000 ms
wait5000 ms

4 Hamming — —

200    ◾    Embedded Software System Testing

Third, if a test session is long enough (i.e., 1 hour in our controlled experi-
ment), the choice between the wait-for-idle strategy and the wait-for-a-
while strategy is immaterial. Also interestingly, if the test session is more
limited in length, applying the wait-for-idle strategy and Random was
observed to achieve the best failure detection rate in our study.

5.3 REGRESSION-TESTING TECHNIQUES
FOR ANDROID APPLICATION

With the prevalence of smartphones and mobile operating system (e.g.,
iOS & Android), mobile applications are becoming an indispensable part
of our life. From the point of view of mobile application developers, those
mobile applications serve as a crucial interface of their business services to
end users. Many popular mobile applications (e.g., Facebook and WeChat)
have hundreds of millions of active end users, which is the key to the busi-
ness success of the company. Indeed, a low-quality mobile application will
seriously impact user experiences. Thus, mobile developers strive to ensure
the quality of their mobile applications to avoid user loss.

A key characteristic of such a mobile application is that their software
components undergo rapid evolution. In another word, newer versions of
the same mobile application are released frequently. For instance, Firefox is
planned with tens of official releases (versions 45.8–52.7) and another tens
of developer releases (versions 53.0–62.0) in 2017. Furthermore, a survey
on Android Play store reports that such a period is around 10 days for apps
with more than 100K+ downloads. Therefore, in such a short period, not
only the source code of an app is modified but also all the testing should
be completed toward the release of the new version.

Regression testing is the activity of testing changed software to provide
confidence that the changed parts of the software behavior as expected and
that the unchanged parts of the software have not been adversely affected.
There are many regression-testing techniques studied in literature. One
important technique is regression test selection (RTS), which selects a sub-
set of test cases (denoted as test suite A) for regression testing, rather than
re-testing all these test cases (denoted as test suite B), on a newer version
based on some notions of equivalence. For instance, if test cases in A and
B both pass through the same set of edges in the same control flow graph
of a version of an app (called the original version in RTS), then test suite A
may be selected to test a new version of the app for the regression testing.
Furthermore, if the control flow graphs of the two app versions are avail-
able, then the set of nodes (i.e., program statements) and the edges of the

Testing Technology of Intelligent Terminal Application Software System    ◾    201

control flow graph of the original version can be labeled to indicate that
these nodes and edges are impacted by changes between the two control
flow graphs. The test suite A can be further reduced to merely include test
cases that pass through these edges impacted by change. This process is
known as change impact analysis.

5.3.1 Safe Regression Test Selection Techniques

In regression-testing research, the retest-all strategy is to execute all the
test cases in an existing regression test suite over the modified software.
Regression Test Selection (RTS) is to select a subset of test cases from a
given test suite (T). The regression test selection essentially consists of two
major activities:

 1. Impact Analysis: Identification of the unmodified parts of the pro-
gram that are affected by the modifications.

 2. Test Case Selection: Identification of a subset of test cases from the
initial test suite T which can effectively test the affected parts identi-
fied by the previous activity.

Rothermel and Harrold formally defined the regression test selection
problem as follows: Let P be an application program and P’ be a modified
version of P. Let T be the test suite developed initially for testing P. RTS
technique selects a subset of test cases T’ of T to be executed on P’, such
that every error detected when P’ is executed with T is also detected when
P’ is executed with T’.

A test case t of T is considered failure-revealing for P and P’, if and only
if it produces different outputs for P and P’. A test case t of T is said to be
modification-traversing for P and P’ if and only if the execution traces of
t on P and P’ are different. If traces are the same, then the outputs will be
the same. They define a test case selection algorithm as safe if it selects all
test cases that are modification revealing. In this work, we consider a test
case selection technique safe if all failure-revealing test cases have been
selected for a program version. Furthermore, we consider one RTS tech-
nique is safer than the other if the former can select more failure-revealing
test cases than the latter on a program version.

202    ◾    Embedded Software System Testing

5.3.2  Workflow for Regression Testing of Android Applications

In this section, we present the workflow of our regression test selection
system (ReTestDroid), which is shown in Figure 5.5.

Given an Android app with two versions P and P’ as well as a test suite
T, ReTestDroid statically builds two ICFGs Gp and Gp’ for P and P’, respec-
tively. After that, ReTestDroid performs change impact analysis on Gp and
Gp’ to label a set of edges on Gp as dangerous. Then, ReTestDroid executes
P over T to generate the coverage matrix of T on P with respect to Gp to
indicate which edges in Gp have been exercised by which test cases in T.
This coverage information is usually collected after the testing of previous
program versions in practice. Finally, ReTestDroid selects a subset T’ from
T based on the coverage matrix and the labeled dangerous edges. Note each
edge in the ICFG of P that is modified in P’ is called a dangerous edge.

5.3.3  Control Flow Graph Construction for Android Application

The ICFG constructed by ReTestDroid significantly enhances the ICFG
built by FlowDroid. As discussed in previous sections, an ICFG built
by FlowDroid includes the modeling of component lifecycles, callback
edges, multiple entry points, as well as the Object-Oriented features of
the Android apps under analysis. The ICFG of FlowDroid provides a solid
yet basic framework for static analysis. ReTestDroid further enhances the
ICFG built by FlowDroid with the following improvements:

Excuted T on P /

Record coverage

Select

Test Cases

Change

Impact

Analysis

Build

ICFG

Program P

Program P’

ICFG Gp

ICFG Gp

ICFG Gp

Dangerous Edges

Test Suite T

Program P

Test Suite T

Test Suite T

FIGURE 5.5  The workflow of ReTestDroid.

Testing Technology of Intelligent Terminal Application Software System    ◾    203

a = new AsyncTask()

a.execute()

a.doinBackground()

onPostExecute()

publishProgress()

onProgressUpdate()

p

FIGURE 5.6 Sub-ICFG modeling asynchronous tasks.

 1. it handles the calls to Android framework APIs related to asynchro-
nous tasks.

 2. its ICFG handles the lifecycle of Fragments;

 3. it handles the native code built with Android NDK.

In our preliminary study, these features are frequently used in Android
application programming. In the next three subsections, we present how
ReTestDroid achieves these improvements.

 1. Handing asynchronous tasks
An asynchronous task is used by an Android app to perform

background operations and publish results on the UI thread without
having to use threads or handlers Figure 5.6. It is in fact the rec-
ommended way in Android for multi-threading. For asynchronous
tasks, ReTestDroid connects the execute() method of each AsyncTask
module with the doInBackground() callbacks implemented by that
AsyncTask module. The doInBackground() method may optionally
call the publishProgress() method, which will lead to the invocation

204    ◾    Embedded Software System Testing

Activity State Fragment Callbacks

onAttach()

onCreate()

onCreateView()

onActivityCreated()

onStart()

onResume()

onStop()

onDesstroyView()

onDestroy()

onDetach()

Created

onPause()

Started

Resummed

Paused

Stopped

Destroyed

Activity a with fragment f and f’

a.onCreated();
f.onActivityCreated();
f ’.onActivityCreated();

a.onResume();
f.onResume();

f ’.onResume ();

p

p

a.onPause();
f.onPause();

f ’.onPause();

p

a.onStop();
f.onStop();

f ’.onStop();

p

p

a.onDestroy();

f.onDestroy();
f ’.onDestroy ();

f.sendMessage()

a.onRestart()

a.onStart();

f.onStart();

f ’.onStart();

a.sendMessage()

FIGURE 5.7 (a) Relationship of Fragment lifecycle and its containing Activity
state. (b) Part of a sample Fragment-aware control flow graph generated by
ReTestDroid.

of onProgressUpdate(). When doInBackground() returns, onPostEx-
ecute() will be called. ReTestDroid added all these edges within the
lifecycle of AsyncTask in its ICFG. An exemplified sub-ICFG model-
ing of the asynchronous tasks is shown in Figure 5.2 where p is a
predicate in the graph. All these sub-ICFGs are incorporated into the
ICFG of ReTestDroid to enable precise impact analysis on application
code with asynchronous tasks.

 2. Handling life cycles of fragments
In Android, a Fragment is a module of code that holds part of the

behavior and/or UI of an Activity and is subservient to an Activity.
Figure 5.7a shows the relationship between Fragment l ifecycle
and its containing Activity state. Each invocation of each callback
method of the containing Activity triggers an invocation of the

Testing Technology of Intelligent Terminal Application Software System    ◾    205

corresponding callback method of an underlying Fragment mod-
ule (e.g., onStart, onResume, onPaused, onStop, onDestroy). For
instance, the onActivityCreated() callback of a Fragment module
is invoked when the onCreate() method of its containing Activity
module is returned. Different Fragment modules may invoke dif-
ferent callbacks of other Android components in different lifecycle
method invocations.

The lifecycle of a Fragment is dependent on the Activity contain-
ing it. To model it, ReTestDroid inserts the call to the callbacks of
Fragments right after each call to the corresponding callback of its
belonging Activity. For example, when the onCreate() method of an
activity is put into the ICFG, the onActivityCreated() methods of its
dependent fragments will be inserted right after it. Other lifecycle
methods of fragments are inserted into the ICFGs similarly.

Most importantly, those event handlers of the Fragment are also
inserted into the ICFGs in between the lifecycle method of onRe-
sume() and onPause(). For example, for the class ListFragment, the
onListItemClick() method will be added into the ICFGs. In contrast,
in the ICFGs of FlowDroid where the Fragment class is not modeled,
the fragment event handler is nowhere to go. If changes happen in
those fragment-related event handlers, those modification-revealing
test cases covering them will not be selected since the change is not
reflected anywhere in the ICFGs of FlowDroid. However, with the
ICFGs of ReTestDroid, the problem is addressed.

Figure 5.7b shows a sub-ICFG modeling an example Activity
with two Fragments generated by ReTestDroid. The a.sendMessage()
represents arbitrary fragment-related event handlers realized in the
application.

 3. Handing native code
The Android platform supports programming in native code (C

and C++) using Android Native Development Kit (NDK). Precise
analysis of Android apps written with native code is nontrivial. Since
the SOOT framework used by FlowDroid is targeted at analyzing
Java bytecode, we have to adopt a static analysis framework for C/
C++ programs to perform the required analysis. To the best of our
knowledge, existing analysis framework on Android application
only handles the Java code and treats all calls to the native code as a
system call symbol in their graph model.

206    ◾    Embedded Software System Testing

Therefore, ReTestDroid first generates an ICFG for the native code
portion. Then it connects this ICFG for the native code to the ICFG
for the Java code portion to construct a combined ICFG. To generate
an ICFG for the native code portion, ReTestDroid generates the call
graph of the whole native code written in C/C++ as well as the intra-
procedural control flow graph of each function with LLVM compiler
framework. Then it connects the call graph to all the Intraprocedural
CFGs of all the functions to build the ICFG of the native code por-
tion. Finally, ReTestDroid identifies each Java Native Interface (JNI)
call site in the ICFG of the Java code portion and adds an edge from
that call site to the ICFG of the native code.

5.3.4 Impact Analysis Algorithm

The idea of the impact analysis algorithm realized by ReTestDroid is an
adaptation of the impact analysis algorithm for procedural program pro-
posed by Rothermel et al. Table 5.11 for Obejct-Oriented programs. They
both try to avoid further traversal beyond a call node if all tests become
modification traversal if analyzed within the called method. However, the
efficient algorithm in Table 5.12 is just for procedural programs, and it
takes no consideration of the OO features such as polymorphism. In con-
trast, our algorithm accommodates the virtual calls appropriately, which
are frequently used in OO and Android application.

As shown in Table 5.11, this efficient algorithm caches the “selectsAll”
tag to skip unnecessary impact analysis of follow-up nodes after a called
node is analyzed. The flag “selectsAll” represents that all its successor nodes
are impacted and there is no need to traverse more. Both methodStatus

TABLE 5.11 Impact Analysis Algorithm

Algorithm 5.11 Impact Analysis Algorithm

Inputs: N : entry node in the ICFG for original program P
 N’: entry node in the ICFG for

modified program P’
Output E: a global set of dangerous edges for P
methodStatus: has status (“unSelected”, “selectsAll”) to

represent method impact info.
methodTable: is a global map (methodName, methodStatus)

which contain methods status
procedure compare(N, N’)

(Continued)

Testing Technology of Intelligent Terminal Application Software System    ◾    207

TABLE 5.11 (Continued)  Impact Analysis Algorithm

Algorithm 5.11 Impact Analysis Algorithm

begin
01 mark N as “N’-visited”
02 foreach(call edge or virtual edge e’ in

N’.leavingEdges){
03 e = N.match(e’) //get edge e with the same

property as e’
04 m and m’ are entry nodes of the targets method of

e and e’, respectively
05 if (m exist and not in methodTable)

{ compareMethod(m, m’) }
06 }//foreach
07 if(All target methods of N are already set

“selectsAll”)
08 return //No more analysis is need for the current

method
09 foreach (normal edge e in N’.leavingEdges){
10 e = N.match(e’) //Get the edge that has the same

property as e’
11 if(e!=null){ //Compare the destination nodes of

the two edges
12 c = e.getTarget()
13 c’ = e’.getTarget()
14 if(!e.equals(e’)){
15 E = E∪e
16 }// Add ‘e‘ to the set of dangerous edges ‘E’
17 else{
18 compare(c, c’)
19 }//Iterative invoke, compare, Compare the next

set of nodes
20 }//Otherwise, ‘e’ is the new edge, Continue
21 }//foreach
22 foreach(edge e in N.leavingEdges and e has no matched

e’){ //’E’ can be any kind of edge
23 E = E∪e
24 }//foreach
end

procedure compareMethod(N, N’)
Input: N, N’: entry nodes of two methods
begin
01 m is the method name for node N
02 put m in methodTable and set methodStatus

(“unSelected”)
03 compare(N, N’)
04 if (None of the exit nodes of m is visited)
05 set methodStatus (“selectsAll”) for m
06 end

208    ◾    Embedded Software System Testing

and methodTable are hash tables to keep the impact analysis status for a
method. The efficient impact analysis algorithm starts by invoking com-
pare(), and its core idea is to handle different types of nodes in different
ways (lines 2–6). If a node N has any call edges or virtual edges, their
target node must be an entry node of a method, and so it invokes compare-
Method() to perform impact analysis on that method (lines 6). If every
target method of N are marked as “selectsAll”, then no more analysis is
needed for the current method (line 7 and 8). Apart from call and virtual
edges, node N may also have ordinary edges.

It then iterates each edge of N’ with a matched edge of N, and checks
whether their target nodes are equal or not (lines 11–14). If their target
nodes match, this algorithm will recursively invoke compare() to traverse
the two graphs (line 18). Otherwise, a dangerous edge is identified and
added to the set E (initially an empty set). Finally, a loop finds whether
there is any leaving edge e of N that does not have any matched edge e’ of
N’ and adds every such edge e to set E (lines 22–24). This algorithm ends
after traversing the whole ICFG of P.

The method compareMethod() accepts the two entry nodes of two
methods, it records the method status into methodTable (line 26) and tra-
verses the CFG by recursively invoking compare() (line 27). Only if none
of the exit nodes of a method is visited, this method is set as “selectsAll”
(lines 28–29).

TABLE 5.12 Safe Test Case Selection Algorithm

Algorithm 5.12 Safe Test Case Selection Algorithm

Input: E: {e1, e2,...} ← get a dangerous edges returned
from Impact Analysis Algorithm

 C: {c1, c2,...} ← coverage matrix of each test
case on the original program P

 T: {t1, t2,...} is a set of test cases for P
Output: T’: {t1, t2,...} is a set of selected test cases

for P’
begin
01 foreach(ci in C){
02 if(ci covers ej in E){
03 T’ = T’∪ti
04 }//end if
05 }//foreach
end

Testing Technology of Intelligent Terminal Application Software System    ◾    209

The test case selection process is intuitive. We first recall that by exe-
cuting the program P over the test suite T, the set of edges on the ICFG
exercised by each test case is recorded, which forms a coverage matrix.
As shown in Table 5.12, the test case selection algorithm accepts the set
of dangerous edges, the coverage matrix, and the whole test suite as its
inputs. It returns the set of selected test cases for P’. Based on the coverage
matrix, it checks whether a test case covers any dangerous edges identified
by an impact analysis algorithm. If this is the case, that test case is added
to the set of selected test cases.

5.4 STRESS TESTING OF ANDROID APPLICATION
The testing engineers expressed that stress testing of Android applications
requires setting up the resource available for the applications to use. We
run an agent service on the Android device to control and monitor the
resource utilization levels of various resources. With the agent service,
we realize a set of strategies to control memory, CPU, network, and USB
usages of an Android device.

5.4.1 Resource Usage Query

The testing engineers specify that there are five typical kinds of resource
information on an Android system that they need to know in order to
test Android applications in their industrial environment: memory usage
statistics, CPU usage statistics, network usage statistics, USB storage usage
statistics, and operating system (OS) information.

We thus realize the profiling functions within our agent services.
Our agent wraps the Linux commands “cat /proc/meminfo” and “top”
to retrieve the CPU and memory information. To get the network usage
information such as the uplink and the downlink network speeds, our tool
uses the Android API android.net.TrafficStats class to get the data sent and
received per second and calculate the current network speed (by adding
up these two values) accordingly. Our tool further invokes the methods of
the Android API android.os.Environment and android.os.StatFs classes to
get the path of a USB device as well as its total space and available space.
Finally, our tool directly uses the Android API android.os.build class to get
the operating system information.

http://android.net

210    ◾    Embedded Software System Testing

/*Function for consuming the CPU usage */

1 Input: the percentage of the CPU to consume.

2 Output: The CPU usage are consumed as required.

3 void consumeCPU(int percentage){

4 /*get the current CPU Usage */

5 float currentPercent = getCPUUsage();

6 float toConsume = percentage – currentPercent;

7 if(toConsume > 0){ /* need to consume resouces */

8 int num = numofCores(); /* get the number of cores */

9 /* start a thread for each core */

10 for(int i=0; i<num; i++)

11 new CPUServiceThread(toConsume).start();

12 }/*if*/

13 }/* end of ConsumeCPU */

14 private class CPUServiceThread extends Thread {

15 private int tPercent;

16 private boolean stop;

17 public CPUServiceThread(int percent) {

18 stop = false;

19 tPercent = percent;

20 }

21 public void run() {

22 long time;

23 /* if not yet stopped by the script*/

24 while (!stop) {

25 time = System.currentTimeMillis();

26 while (System.currentTimeMillis() - time < 10);

27 try {

28 Thread.sleep(10 * (100 - tPercent) / tPercent);

29 } catch (InterruptedException IException) {}

30

31

}/* while*/

}/* run*/

32 public synchronized void stopThread() {

33 stop = true;

34 }

FIGURE 5.8 Algorithm consumeCPU() for controlling CPU usage.

5.4.2 Memory Stress Testing

To keep the memory consumption at a specified level (e.g., 90% of all
memory), the agent service actively allocates and de-allocates memory
blocks via Linux’s native memory management library through the
Java Native Interface so that it bypasses the memory usage restriction
imposed by the Android OS on the agent service. A memory usage con-
trol is valuable in testing memory-intensive applications such as games.
For instance, it is critical to test whether an application runs or shuts
down correctly even in an execution environment with a small amount
of available memory.

Testing Technology of Intelligent Terminal Application Software System    ◾    211

5.4.3  CPU Stress Testing

An Android device is typically equipped with a multi-core processor
(CPU). Figure 5.8 shows the consumeCPU() algorithm to control the CPU
usage. The algorithm first estimates the total amount of additional CPU
loads to be consumed (lines 5–6). Then, it starts the same number of
threads as the number of CPU cores (lines 8–11) For each thread, the algo-
rithm uses a busy loop and the sleep system call to consume a certain per-
centage of the CPU processing capability and release the consuming CPU
capability, respectively (lines 25–28). We have found that in our industrial
case study, this algorithm can effectively control the CPU usage between
10% and 98% when testing an Android application. This is extremely use-
ful for stress testing a computationally intensive application such as play-
ing or recording a video. In an environment with low CPU availability,
these applications should either degrade their quality of services or quit
gracefully instead of crashing or becoming non-responsive to users.

/*Function for consuming the network bandwidth*/

1 Input: the percentage of the network bandwidth to consume.

2 Output: The network bandwidth is consumed as required.

3 void consumeNetwork(int percentage){

4 /*calculate the number of network consumer threads */

5 int num=MAX_NETWORK_THREADS*percentage/100;

8 /* start the threads accessing files on USB storage */

9 for(int i=0; i< num; i++)

10 new NetworkAccessThreads(i).start();

11 }/*end of consumeNetwork*/

12 private class NetworkAccessThreads extends Thread {

13 private int idx;

14 private boolean stop;

15 public NetworkAccessThreads (int aIndex) {

16 stop = false;

17 idx = aIndex;

18 }

19 public void run() {

20 /* if not yet stopped by the script*/

21 while (!stop)

22 /* even numbered thread send data*/

23 if(idx % 2 == 0)

24 Post data to Web server with HTTP client;

25 else /* odd numbered thread receive data*/

26 Get data from Web server with HTTP client;

27 } //run

28 public synchronized void stopThread() {

29 stop = true; } /* stopThread*/

30 } /* end of NetworkAccessThreads*/

FIGURE 5.9  Algorithm consumeNetwork() for controlling network usage.

212    ◾    Embedded Software System Testing

5.4.4 Network Stress Testing

Figure 5.9 shows the consumeNetwork() algorithm to help stress testing
the network. In essence, to control the network bandwidth usage, the
algorithm starts several threads, each sending and receiving data via the
http client API to communicate with a Web server (in the testing lab)
to consume the network bandwidth. The variable MAX_NETWORK_
THREADS is the number of network threads needed to consume
100% of the available network bandwidth. Then, it controls the net-
work bandwidth consumption by starting a portion of such threads, i.e.,
MAX__USB_THREADS × percentage ÷ 100.

TAST also provides an API to determine a value for MAX_NETWORK_
THREADS, which simply allocates an increasing number of threads
(initially 1) until all the available network bandwidth has just been con-
sumed. This algorithm is useful for testing network-dependent applica-
tions such as online music players, online video streaming applications or
Web browsers. Instead of freezing and buffering endlessly, these applica-
tions should either reduce their bandwidth requirement or stop gracefully
under adverse network conditions.

5.5 SUMMARY
In this chapter, we first discussed the characteristics of Android appli-
cations. Then, we systematically discussed the test case generation tech-
nique, the regression-testing techniques, and the stress-testing techniques.
The authors are encouraged to customize and build their own testing tools
most suitable for their target Android application.

213

C h a p t e r 6

Real-Time Embedded
Software System
Testing Environment
Construction Technology

Building an effective embedded software system testing envi-
ronment is the basis for realizing real-time, automated closed-loop

testing. This chapter will introduce virtual machine technology, explore
the design ideas and methods of test virtual machine specification, and
propose real-time embedded software simulation test environment con-
struction technology, specifically including architecture design and test
execution engine, to provide technical support for realizing a common
real-time embedded software simulation test environment construction.
The proposed technology includes architecture design and test execution
engine, and provides technical support to realize a common real-time
embedded software simulation test environment.

6.1 A NALYSIS OF EXISTING TEST ENVIRONMENTS FOR
REAL-TIME EMBEDDED SOFTWARE SYSTEMS

According to the characteristics of real-time embedded software, the cur-
rent system testing methods for real-time embedded software are mainly
based on the following three ways:

DOI: 10.1201/9781003390923-7

https://doi.org/10.1201/9781003390923-7

214    ◾    Embedded Software System Testing

 1. Real test environment. Real test environment is to directly establish a
real connection between the whole system (including hardware plat-
form and embedded software) and its cross-linked physical devices
to form a closed loop for testing.

 2. Semi-physical simulation environment. Semi-physical simulation
environment is to establish a connection between the embedded sys-
tem (software/hardware, called the target system) and its simulated
cross-linked system and cross-linked physical devices (if available) to
form a closed-loop test of the target system. Typical products using
this approach are the ValidorGold system from B-TREE, USA, and
the ADS2 system from Tech SAT, Germany.

 3. All-digital simulation environment. All-digital simulation environ-
ment means stripping the code of embedded software and imple-
menting an integrated simulation environment (also called digital
platform) for testing the software with all-digital simulation tech-
nology. It implements embedded software testing on the host HOST
by developing simulators for CPU instructions, common chips, I/O,
interrupts, clocks, etc. At present, the method is adopted by E-SIM
system developed by Prosoft of USA for C language programs.

Based on the comparison of the above three testing methods, a compara-
tive analysis of the three testing methods is given in Table 6.1.

TABLE 6.1 Comparison of Three Real-Time Embedded Software Testing Methods

Serial
Number Category Advantages Disadvantages

1 Real Testing Fully guarantee real-time and High cost of building and
Environment authenticity, reliable and running environment, high

credible test results, with great loss in case of error, and poor
reference value security

2 Semi-physical Good generality, Poor flexibility, inadequate
simulation interchangeability of models, testing in some cases, and
environment real-time assurance, moderate potential pitfalls

cost, both test results and
security

3 Full digital Low cost, short development Poor applicability, great
simulation cycle, high effectiveness, difficulty in simulating
environment better support for test cases, cross-linked systems,

good cross-platform, good difficulty in securing uniform
transparency and and accurate system clocks
controllability of the and rationalizing timing
environment relationships

Real-Time Embedded Software System    ◾    215

According to the comparison of the above three testing methods, engi-
neering practice has proven that the use of semi-physical simulation environ-
ment is currently the most effective method, generally known as Real-time
Embedded Software Testing Simulation Environment (RT-ESSTE).

Definition 6.1 Real-time embedded software
simulation test environment

RT-ESSTE is a computer system for real-time embedded software test-
ing. Testers can organize the input of the software under test, drive the
operation of the software under test, and receive the output results of the
software under test by configuring various test resources of the system
according to the requirements of the software under test, so as to conduct
automatic, real-time, non-invasive closed-loop testing of real-time embed-
ded software.

In general, RT-ESSTE generally consists of a non-real-time component
and a real-time component, with the data communication pipeline being
the connector between these two components:

 1. The main function of the non-real-time component is to describe
the test cases and test environment using the test language, forming
test files that can be recognized and executed by the real-time com-
ponent, including the cross-linked environment, simulation model,
and test tasks of the system under test. The non-real-time compo-
nent runs on a GUI workstation, and the operating system can be a
general-purpose operating system.

 2. The main function of the real-time component is to form a test envi-
ronment and execute tests based on each file pair generated by the
non-real-time node. Most of the real-time components run on real-
time nodes with real-time operating systems, such as VxWorks, UC/
OS-II, and RT-Linux.

A schematic diagram of the basic components of RT-ESSTE is shown in
Figure 6.1.

From the literature research, the current real-time embedded software
test environment is mostly a dedicated test environment established for
specific areas or specific needs, and its real-time, generality, portability
and other aspects are inadequate, as shown in:

216    ◾    Embedded Software System Testing

non-real-time
node

real-time
node

data
communication

pipeline

FIGURE 6.1 Schematic diagram of the basic components of RT-ESSTE.

 1. Poor real-time: many existing real-time embedded software test envi-
ronment only users simple timing simulation and functional verifi-
cation and did not introduce a real-time operating system, such as
some based on DOS or Windows and other non-real-time operating
systems, some based on microcontrollers, DSP and other operating
environments, these directly lead to the inability to meet the real-
time embedded software test data complex, large amounts of data,
high real-time requirements (usually for milliseconds) requirements.

 2. Poor versatility: Since dedicated RT-ESSTEs all have their own unique
test development systems, the organization of the tests is not exactly
the same, resulting in a test environment with little versatility.

 3. Poor portability: For different development languages and running
environments of real-time embedded systems, the test descriptions
(programs) developed by the dedicated RT-ESSTE cannot run under
different test environments, resulting in poor portability of test
resources.

 4. Poor maintainability: The strong correlation between RT-ESSTE and
the system under test makes any modification or upgrade of the real-
time embedded system under test may lead to large-scale changes
in the test environment and may even require a redesign of the test
environment, which will result in the developed test description
(program) not being reusable and almost not maintainable.

6.2 VI RTUAL MACHINE TECHNOLOGY AND REAL-
TIME EMBEDDED SOFTWARE TESTING

In recent years, virtual machine technology has received extensive atten-
tion and made great progress, such as virtual computing environments
based on virtual machines, Java virtual machines, HEC virtual machines,
communication virtual machines, and real-time Java virtual machines.

Real-Time Embedded Software System    ◾    217

In general, the core of virtual machine technology is to intercept the
upper layer software’s call to the underlying interface through a new vir-
tual middle layer and reinterpret and re-process the call to achieve share-
able and manageable resources in a heterogeneous environment. Through
virtual machines, a virtual computer can be emulated on the original hard-
ware resources and operating system, so that the software runs directly in
the virtual machine without modification. Virtual machine technology
reduces the coupling between the user development environment and the
program runtime environment and is a very effective way to improve sys-
tem versatility, portability, and maintainability.

In the development of virtual machines, a variety of virtual machines
have emerged for different application requirements, and virtual machines
can be classified according to a variety of criteria, one of which is a virtual
machine model classification as follows:

 1. IBM virtual machine model: A virtual machine running on the IBM
S/390. A single computer system can be implemented to simulate
multiple computers with different operating systems through the
IBM virtual machine model.

 2. Program porting virtual machine model: The program porting vir-
tual machine model satisfies the need for programs to run on multiple
platforms and is more typical of program porting virtual machines
such as the Java virtual machine and the HEC virtual machine.

 3. Extended virtual machine model: The extended virtual machine
model addresses the problem of providing services and functions at
the operating system level that do not exist in the system hardware.

Virtual machines that address the portability and generality of pro-
grams are inherited from the program portability virtual machine model.
Although Java and HEC virtual machines have excellent designs in terms
of portability and generality, they do not fully meet the needs of real-time
embedded software testing due to deficiencies in execution speed, memory
management mechanisms, task management, data collection and concur-
rent execution.

This book introduces virtual machine technology into the construction
of RT-ESSTE, and its purpose is to solve the problems of real-time, general-
ity and portability of test descriptions (programs), i.e., to solve the problems
of test descriptions (programs) running on different test execution systems.

218    ◾    Embedded Software System Testing

After analysis, this book considers that the program porting virtual machine
with real-time extensions is suitable for solving the above problems.

6.3 D ESIGN OF A VIRTUAL MACHINE
SPECIFICATION FOR REAL-TIME EMBEDDED
SOFTWARE SIMULATION AND TESTING

In the design of the virtual machine-based real-time embedded software
simulation test environment, direct data transfer between the test devel-
opment system and the test execution system is avoided due to the vir-
tual machine, making it possible for the m test development systems of
RT-ESSTE to communicate with the n test execution systems with a maxi-
mum of n + m communication channels instead of n × m. At the same time,
in terms of generality, a formal statute language is used to describe real-
time embedded software tests, and test descriptions (programs) written by
testers on following the virtual machine specification can be executed on
all RT-ESSTEs that support this virtual machine, thus greatly improving
efficiency and maintainability.

Typically, a virtual machine is defined by a set of specifications. A vir-
tual machine is not a particular software implementation, but a set of rules
that constitute a specification, and constructing a specific virtual machine
implementation requires compliance with the corresponding specifica-
tion. A virtual machine can be implemented in any programming lan-
guage on any kind of operating system or hardware platform, but only if its
specifications are followed. Based on the in-depth study of the basic tech-
nical research of virtual machine, this book completes the definition of the
specification for real-time embedded software test virtual machine, such
as the design of data types and memory management, the classification of
test commands and test data, the introduction of real-time task scheduling
mechanism, the division and definition of the test instruction system, at
the same time, the test virtual machine specification and the test descrip-
tion studied in the subsequent chapters of this book closely with the test
descriptions studied in the subsequent chapters of this book, which enables
the accurate implementation of virtual machine-based testing.

Definition 6.2 Real-time embedded software emulation
test virtual machine specification

The Real-time Embedded Software Simulation Testing Virtual Machine
Specification (RT-ESSTVMS) is a program migration virtual machine

Real-Time Embedded Software System    ◾    219

specification for real-time embedded software simulation test. It defines
the data type, memory management, task management, instruction sys-
tem, test description file and other requirements necessary for real-time
embedded software simulation test, so that the test description (program)
based on the specification can be executed on all RT-ESSTEs that support
the specification.

Due to the limitation of space, this book only provides a brief descrip-
tion of the real-time embedded software simulation and testing virtual
machine specification.

6.3.1 Data Type

To enhance platform independence, the data types of RT-ESSTVMS and
their operations must be strictly defined.

In RT-ESSTVMS, data types are divided into basic types and reference
types. To improve the real-time performance of RT-ESSTVMS, almost all
data type checks are done at compile time.

 1. Basic types specify the range of values for each data type, but do
not define their bit widths, and the occupancy widths required
to store the values of these types are determined by the design
of the specific virtual machine implementation. RT-ESSTVMS
basic data types include two categories: numeric types and return
address types:

• Among the numeric types, there are integer types, floating-point
types and block data types: integer types include byte, bool, char,
short, int and long types, floating-point types include float and
double; block data types are determined according to the real-
time embedded software bus data types. Numeric type imple-
mentation mechanism can be changed appropriately according
to the compiled program requirements.

• The return address type is used as the test task return type and is
only used inside the RT-ESSTVMS implementation.

 2. RT-ESSTVMS reference type is mainly a reference to the simula-
tion model instance variable type, pointing to the location of this
simulation model instance variable in the variable index table of
the runtime area of RT-ESSTVMS, and the real value of this type is
obtained by reading the data area of the simulation model variable
index table.

220    ◾    Embedded Software System Testing

6.3.2 Memory Management

Considering the real-time and efficiency issues, RT-ESSTVMS adopts the
manual memory management method to manage the runtime data area,
giving the right to allocate and use memory to the testers. The specific
memory allocation and management can use a table-driven algorithm,
sequential table matching algorithm or isolated storage algorithm, etc.
This book recommends using the sequential table matching algorithm,
which has higher performance and reliability and is relatively simple to
implement. RT-ESSTVMS runtime data area is shown in Figure 6.2.

 1. Downstream test command area: The downstream test command
area stores the test command queue downloaded from the test
development system to the test execution system and the test com-
mand information downloaded online by the testers during the test
execution.

 2. Downlink test data area.

• During test initialization, the downlink test data area holds the
test description file information downloaded from the test devel-
opment system to the test execution system;

• During the test execution, the downlink test data area holds the
test data sent to the system under test by the real-time embedded
device simulation model (a virtual device model built based on
the cross-linked devices around the system under test). The test
data is arranged in the order requested by the system under test.
In each scheduling cycle, the downstream test data area sends the

U
n
allo

cated
 area

T
est task

 fram
e

T
est task

 stack

D
ev

ice m
o
d
el

in
fo

rm
atio

n
 area

V
ariab

le in
d
ex

 tab
le

U
p
lin

k
 test d

ata area

D
o
w

n
lo

ad
 test d

ata area

D
o
w

n
stream

 test

co
m

m
an

d
 area

RT-ESSTVMS

Run-time data area

FIGURE 6.2 Memory allocation scheme as defined by RT-ESSTVMS.

Real-Time Embedded Software System    ◾    221

test data of this scheduling cycle to the system under test until the
end of the test.

 3. Uplink test data area: It stores the device simulation model and the
output data of the system under test, which can be sent to the tester
during the test, or after the test, so that the tester can verify the test
results.

 4. Variable index table: The variable index table records all the variable
index information of the device simulation model and the system
under test in the downstream and upstream test data areas. During
the test process, you can get the information of any device simulation
model variables through this table, and according to the length and
type of the variables, you can get the data blocks from the data area,
and then carry out the corresponding data communication and test
feedback operations.

 5. Device model information area: When test initialization, if there
is device simulation model information in the test file, the system
will read out the simulation model information and open a separate
memory area for all device simulation models in the RT-ESSTVMS
memory domain to store the device simulation model information
into the device model information area.

 6. Test task stack: Store information about all test tasks in the runtime
of RT-ESSTVMS. All tasks that need to get executed during the run-
time when the test is initialized are recorded in the test task stack.

 7. Test task frame: It is the test task activity area of RT-ESSTVMS.
Whenever a new test task is started, the system allocates a test task
frame to it. The test task frame consists of three parts: local variable
area, operand stack and frame data area. The test task frame is the
smallest scheduling element in the test process.

6.3.3 Test Task Management

Test task management is a key factor in realizing automated and real-time
testing in real-time embedded software simulation testing. In consider-
ation of the complexity of real-time embedded software, RT-ESSTVMS
provides only the system clock management scheme necessary for the
test environment, and at the same time provides several test task sched-
uling methods and synchronization methods, so that testers can choose

222    ◾    Embedded Software System Testing

the corresponding task management strategy according to the specific test
needs when building the test environment.

 1. Test clock
To ensure synchronization among test tasks during real-time

embedded software simulation testing, the test execution system
starts timing from test execution, all test tasks use absolute time-
stamps starting from the zero moment and running throughout the
test, and the data transmission of test tasks is carried out strictly
according to the time sequence.

The relationship between Scheduling Time, Testing Time, and
Scheduling Period in RT-ESSTVMS is as follows:

 Testing Time S= ×cheduling Times Scheduling Period

At a certain scheduling time, the system completes the calculation
of the test time and determines whether there is a test task to be exe-
cuted at that moment, and if so, activates it for execution.

 2. Test task scheduling
In RT-ESSTVMS, the core of test task management is the prob-

lem of selecting a task scheduling strategy, because the task schedul-
ing strategy directly affects the efficiency of the system and even the
implementation of the function, there are many scheduling strategies
available, but most of them evolved from two scheduling strategies,
namely, the single rate scheduling strategy (RMS: Rate Monotonic
Scheduling) and the earliest Deadline First scheduling (EDF: Earliest
Deadline First). The analysis is as follows:

• RMS is a static scheduling policy, which is one of the earliest
scheduling policies proposed for system development and is still
widely used today, mainly for scheduling static periodic tasks;
RMS specifies the priority according to the period, which is
inversely proportional to the period, and tasks with shorter peri-
ods have higher priority.

• EDF is a more commonly used dynamic scheduling strategy. It
determines the priority based on the size of the task deadline,
with the task closest to the deadline having the highest prior-
ity and the task furthest from the deadline having the lowest
priority, so the priority must be recalculated after each task is
finished.

Real-Time Embedded Software System    ◾    223

A comparison of RMS and EDF scheduling strategies is given
in Table 6.2.

RT-ESSTVMS only provides principles for selecting task
scheduling strategies, and users can select the required schedul-
ing strategy according to the requirements of specific test envi-
ronment implementations, but RT-ESSTVMS gives preference
to RMS or RMS evolution-based test strategies, for the following
reasons.

• RMS can guarantee deadlines for all tasks and can guarantee the
stability and predictability of the system, which is one of the con-
ditions that must be met by formal real-time embedded software
testing.

• Compared with EDF, RMS is a bit simpler to implement, which
helps improve the reliability of the RT-ESSTE execution system,
because RT-ESSTE requires testers to be visible to the scheduling
strategy in order to organize the test process according to their
test intent while implementing a simple RMS scheduling strategy
facilitates the user’s understanding and control.

 3. Test task synchronization and mutual exclusion
RT-ESSTVMS provides a choice of synchronization and mutually

exclusive policies between test tasks, providing a protection mecha-
nism for accessing the downstream test data area, simulation model
information area, variable index table and upstream test data area
during testing. Similarly, RT-ESSTVMS does not provide restrictions
on task mutexing and the user can select the required algorithm
according to the specific RT-ESSTE implementation requirements.
RT-ESSTVMS provides the following synchronization and mutexing
selection strategies.

TABLE 6.2 Comparison of RMS and EDF Scheduling Strategies

Comparison Items RMS EDF

Dispatchability Static Optimal Scheduling Dynamic scheduling is better
Certainty of execution High certainty Low certainty
System real-time Slightly lower Higher
Applicable system types Cyclical tasks predominate Episodic and off-cycle tasks

predominate
Implementation
Complexity

Low High

224    ◾    Embedded Software System Testing

• When the RT-ESSTE implementation has a very large amount
of shared memory data, the more efficient semaphore approach
can be used to solve task synchronization and mutual exclusion
problems.

• When the system requires high reliability, the message queue
method can be chosen.

6.3.4 Instruction System

The instruction system is the core of RT-ESSTVMS. To improve portabil-
ity, ESSTVM eliminates low-level hardware control instructions, reduces
the dependency on the host platform, and adopts a concise design principle
in instruction design, where each instruction contains the corresponding
instruction type, instruction parameters, and the corresponding instruc-
tion reference data. The RT-ESSTVMS specifies that the test instruction
system consists of test task instructions and system service instructions,
and the instruction system composition is shown in Table 6.3.

TABLE 6.3 Instruction System Specified by RT-ESSTVMS

Category Instruction Type Function Description

Testing task
instruction

Test data operation instruction Supports both integer and
floating-point instructions

Test data type conversion
instructions

Test data type conversion

Process Control Transfer
Instructions

Instruction to jump conditionally
or unconditionally

Test data loading and storage
instructions

Data transfer between local
variables and runtime data area

Task call and return instructions Test task invocation and return
Systems service
instructions

I/O operation instructions I/O operation for the system under
test

Test task control commands Control of the test task execution
process

Simulation Model Instructions Creation, acquisition, verification
and destruction of simulation
device models

System class service instructions Loading and unloading of system
and IO interface drivers; system
time-related instructions

Test Data Service Instructions Transmission, collection and
storage of test data

Exception Handling
Instructions

Handling of exceptions in the
testing process

Real-Time Embedded Software System    ◾    225

6.3.5 Test Description File

Before starting real-time embedded automation simulation testing,
testers should first use the test development system to generate a test
description RT-ESTDL file according to the RT-ESSTVMS specifica-
tion. The test description file specified by RT-ESSTVMS should include
device simulation model information, test configuration information,
test cases, etc. These test description files will be downloaded to the test
execution system after test initialization and preprocessed and generate
a sequence of test instructions that can be recognized by the test execu-
tion system.

6.4 RT-ESSTVMS BASED REAL-TIME EMBEDDED SOFTWARE
SIMULATION TEST ENVIRONMENT DESIGN

6.4.1 RT-ESSTE Architecture Design

Based on the real-time embedded software simulation and testing virtual
machine specification, this book gives the design and implementation
technology of real-time embedded software simulation and testing envi-
ronment RT-ESSTE, which adopts a distributed and hierarchical architec-
ture design as shown in Figure 6.3.

RT-ESSTE is an automated simulation test platform for real-time embed-
ded systems and is an integrated software/hardware system, as described
in Section 6.1, divided into two parts: the test development system (upper
computer) and the test execution system (lower computer). The test devel-
opment system and the test execution system are connected to each other
via Ethernet, and this architecture helps decompose the RT-ESSTE func-
tions while reducing the This architecture not only helps the decompo-
sition of RT-ESSTE functions but also reduces the coupling between the
non-directly connected layers of RT-ESSTE, minimizing the impact due
to changes in each layer.

6.4.2 Test Development System Design

RT-ESSTE test development system, running on a GUI workstation (upper
computer), and the operating system can be a general-purpose operat-
ing system. The function of the test development system is to complete
the test development work, i.e., the testers complete the test preparation
work according to the RT-ESSTVMS specification and finally form the
test description file conforming to the RT-ESSTVMS specification. After
test initialization, the test description file is pre-processed by the lower

226    ◾    Embedded Software System Testing

External
Service

Test description execution
engine

Testing
services

Internal
Services

Test Task
Management Test task scheduling

Test Task
Communication

Microkernels

exception
handling

Real-time operating system (RTOS)

Test initialization

Equipment simulation modeling Test Case Generation

Test configuration and
management

Test
Development

SystemTest Process Monitoring

Data communication pipeline
(TCP/IP)

Real-time embedded system under test

I/O
interface

RT-ESST SYSTEM

Test
Execution

System

RT-ESTDL Test description file

On-line

instruction
processing

FIGURE 6.3 RT-ESSTE architecture design.

computer to form test instruction sequences conforming to RT-ESSTVMS
specification, which can be run on any platform equipped with RT-ESSTE
execution system, thus ensuring versatility and portability.

The main functions of the test development system include:

• Device Simulation Model Development. To improve the test effi-
ciency and enhance the reusability of the test description (program),
the tester needs to build the simulation model of the real-time embed-
ded system under test and its surrounding cross-linked devices. The
simulation model information of RT-ESSTE mainly includes the
simulation model identification, the connection method between

Real-Time Embedded Software System    ◾    227

the simulation model and the system under test, and the variable
information of the simulation model. The device simulation model
is finally described by RT-ESTDL. Please refer to the related contents
of this book for the specific device modeling process and contents,
which will not be repeated here.

• Test case generation. RT-ESSTE uses a test case generation method
based on a combination of real-time extended UML and RT-EFSM,
which is finally described by RT-ESTDL. The specific generation pro-
cess is described in the relevant part of Chapter 3 of this book and
will not be repeated here.

• Test process monitoring. The RT-ESSTE test process is based on the
real-time execution of RT-ESTDL, which can realize unattended
automated testing through the test description driver. The test ini-
tialization, test start and test end commands, as well as the online
generation of test cases and downloading and execution during the
test process are also handled by the test monitoring.

• Test configuration and management. Allows testers to configure the
test environment with information such as system scheduling clock
cycle settings, bus type and number settings, and test execution sys-
tem maximum memory settings. In addition, it allows users to man-
age the resources involved in testing, such as test result data files and
test description files.

6.4.3 Test Execution System Design

RT-ESSTE test execution system, running on a real-time processor node
(lower computer) with an operating system using a real-time operating
system, such as VxWorks, UC/OS-II, and RT-Linux. Its main function is
to receive the test description file generated by the test development system
and complete the file pre-processing, and under the real-time scheduling
of the test task, complete the sequence of test description instructions The
main function is to receive the test description file generated by the test
development system, and complete the file pre-processing, and complete
the execution of the test description instruction sequence under the real-
time scheduling of the test task to drive the test process.

RT-ESSTE test execution system is based on real-time operating sys-
tem (RTOS), and also adopts the design idea of layering, by decompos-
ing the test execution system functions into external services, internal

228    ◾    Embedded Software System Testing

services, microkernel and unified communication protocol stack, this
design reduces the coupling degree between the non-directly connected
layers of RT-ESTDES and minimizes the impact caused by the changes
of each layer. This design reduces the coupling between the non-directly
connected layers of RT-ESTDES, minimizes the impact of changes to each
layer, and achieves good real-time, versatility, portability and maintain-
ability. The following is a concrete analysis.

 1. External Services
RT-ESSTE external service provides an external interface between

the test execution system and the test development system to com-
plete the download/upload communication of test data, with the fol-
lowing main functions:

• Test initialization process to complete the necessary initializa-
tion settings of the test execution system, such as system clock
granularity (minimum scheduling period), buffer memory alloca-
tion (including allocation of memory space for device simulation
models), registration and creation of various tasks in the test, and
configuration of hardware I/O drivers. Each simulation model is
allocated physical space to determine the I/O information between
the simulation model and the system under test, such as I/O type
and electrical characteristics configuration information, to facili-
tate data transfer and task scheduling during the test.

• Online instruction processing. RT-ESSTE allows testers to
download and execute test instructions (test descriptions) online
according to test needs during the test process. Online instruc-
tions will complete the pre-processing of test instructions and
invoke the corresponding test description execution process to
ensure that online instructions are executed. See Section 6.5.5 for
online instruction processing.

 2. Internal Services
RT-ESSTE internal services are built on top of the microkernel

of the test execution system, which completes the implementation
of the application layer functions of the test execution system by call-
ing the API interface provided by the kernel, with the following main
functions:

Real-Time Embedded Software System    ◾    229

• The test description execution engine, which is under test sched-
uling, completes the test description pre-processing order and
test execution functions, see Section 6.5 of this chapter for the
specific process.

• The function of the test data service program is to complete the
real-time collection, upload and display of test data according to
the test configuration. The test data collection service saves and
backs up all the data in the test (including the historical data of
each device simulation model) and meets the data requirements
of other programs of the test execution system.

• The exception handler is responsible for handling excep-
tions thrown by the test process and attempts to fix the cur-
rent exception. When the system cannot fix the exception, the
exception message is output. Exception handling methods can
be dynamic using try-catch statements or static table lookup
methods. For the consideration of real-time embedded system,
RT-ESSTE adopts the static table lookup method, that is, in the
implementation of RT-ESSTE, the exception handling table is
designed in advance, and when an exception occurs, the error is
handled by querying the exception handling table in real time
and notifying the tester whether to terminate the test according
to the exception level.

 3. Microkernel
The RT-ESSTE microkernel is built on top of the RTOS and com-

pletes the basic core functions in the test execution system by calling
the API interface provided by the unified communication stack, as
described below:

• The test task management program manages and controls all test
tasks in strict accordance with the RT-ESSTVMS requirements
for memory management. The implementation of this program is
based on the test task chain table, which records the information
of all test tasks, such as task name, task type (period type or event
type), task priority, task registration, start, and delete and task
run period. External service programs can call the API interface
to complete the corresponding functions.

230    ◾    Embedded Software System Testing

• The function of the test task scheduler is to complete the real-
time scheduling of various test tasks during the test run, and the
scheduling algorithm adopts the improved scheduling algorithm
based on RMS.

• The test task communication program provides data commu-
nication between the test tasks and the system under test. The
design of task synchronization and mutual exclusion must meet
the requirements of the ESSTVM specification.

 4. Unified Communications Protocol Stack
The unified communications protocol stack (UCPS), based on the

RT-ESSTVMS specification, encapsulates a series of API interface
functions related to communication protocols for real-time embed-
ded software emulation tests for the needs of test tasks and is an
important support for the microkernel to provide functional imple-
mentation to external service programs.

UCPS also adopts a layered design idea, divided into interface pro-
tocol layer, routing protocol layer, bus protocol layer, and driver layer,
as shown in Figure 6.4:

• The interface protocol layer is the only interface between the pro-
tocol stack and the specific application. This layer is the encap-
sulation of all the services provided by the protocol stack and
is divided into test data interface and test command interface,
which correspond to two different types of data respectively.

• The routing protocol layer is a classification process for data com-
munication and uses a static routing mechanism to store data
information in the form of routing tables to reduce the dynamic
routing overhead during test execution and improve real-time
data communication.

• The bus protocol layer is where the test data and test commands
parsed by the routing layer are organized according to the bus
type in accordance with the respective protocol. According to the
bus type, it can be divided into two categories: simulation bus
and hardware interface. The simulation bus mainly completes the
data and message communication between simulation models,
while the data interaction between the test execution system and
the system under test is completed through the real IO bus.

Real-Time Embedded Software System    ◾    231

Test
Command
interface

Interface
Protocol

Layer

Test data routing service

Test command routing service
Routing
Protocol

Layer

Routing table

System simulation
bus

Data simulation bus

Command emulation bus

System hardware
interface

1553B protocol
429 protocol

RS4 22 protocol

Bus
Protocol

layer

I/O Hardware driver

1553B protocol

429 protocol

RS422 driver

AD/DA driver...

Driver
Layer

Test data
interface

FIGURE 6.4 Design of the unified communications protocol stack.

• The driver layer consists of drivers for various types of buses and
IO interfaces, which complete the underlying operations of send-
ing and receiving communication data. Corresponding to the
bus protocol layer, each data transmission medium has its own
driver.

As can be seen from the above design, the use of layered UCPS
limits interface changes between the protocol stack layer and
layer is limited only by the impact of the layer being changed,
with good portability and scalability. Especially for real-time
embedded software testing, the hardware I/O interfaces required
by different systems under test are often very different, using this
design, it is easy to quickly complete the adaptation of new hard-
ware I/O interfaces, to complete the interchange of different real-
time embedded system hardware devices, with good scalability
and versatility.

232    ◾    Embedded Software System Testing

6.5 D ESIGN AND IMPLEMENTATION OF A
REAL-TIME EMBEDDED SOFTWARE TEST
DESCRIPTION EXECUTION ENGINE

In the RT-ESSTE design, the test description based on RT-ESTDL is the
core of the whole test environment execution system operation. On the
basis of the completed RT-ESSTE architecture design, this section details
the design and implementation process of RT-ESTDEE, the real-time
embedded software test description execution engine, and finally analyzes
and evaluates the system execution efficiency.

6.5.1 Overall Design of RT-ESTDEE

RT-ESTDEE is designed using a phased model, with each phase complet-
ing a different function, consisting mainly of a pre-processing process, a
scheduling process and an execution process:

 1. The test describes the pre-processing process (which can also be
called the compilation process). Based on the completion of test
initialization, the test execution engine preprocesses the test
description file received from the test development system (upper
computer), mainly through lexical analysis, syntax analysis and
semantic analysis, to generate test instruction sequences conform-
ing to RT-ESSTVMS specifications. In the pre-processing process,
symbol table management and exception handling always run
through the whole process.

 2. Scheduling process. By the test task scheduler, the test tasks are
scheduled according to the test task attributes, and for the test tasks
that meet the trigger conditions, they are handed over to the test
description execution process for processing.

 3. Test description process. The main function of the execution process
is to execute the pre-processing generated test instruction sequence
in real time when the scheduler meets the trigger conditions and to
complete the real-time driving of the test process.

The overall design of the RT-ESTDEE is shown in Figure 6.5.

6.5.2 Test Description Pre-processing Process

The RT-ESSTE pre-processing process based on object-oriented analysis is
shown in Figure 6.6.

Real-Time Embedded Software System    ◾    233

pretreatment
process

Test
description

code

API interface

Intermediate
Instruction
Execution

exception

handling

Lexical

analysis

Grammar
analysis

Semantic
analysis

Intermediate
Instruction
Generation

Scheduling
process

Execution
Processs

Instruction

Queue

Trigger Test driver

Mark

Syntax tree

Interm
ediate

instruction

S
y
m

b
o
l tab

le m
an

ag
em

en
t

E
x
cep

tio
n
 h

an
d
lin

g

Test feedback

Real-time
scheduling

FIGURE 6.5 Overall design of the RT-ESTDEE.

mainmain

std::mainProcstd::mainProc

::GlobalProc::GlobalProc tdfile:CTDfiletdfile:CTDfile curTdfile:CTDfilecurTdfile:CTDfile cmplr:CCompilercmplr:CCompiler

1:getTDFileName()

2:setEntryPoint()

3:loadTDFile()

4:setCurTDFile()

5:getInstance()

6:compileTDFile()

FIGURE 6.6 Test description execution engine pre-processing process.

The pre-processing process involves two main classes, the CTDfile class
responsible for test description file management, and the compiler class for
the compilation process, as described below:

• The file management class CTDfile completes the management func-
tion of the test description file, which mainly contains built-in sym-
bolic information related to the test description, pre-included path

234    ◾    Embedded Software System Testing

sysSymbolssysSymbols

TDfileTDfile

varValueTblvarValueTbl

ClassMapClassMap

ProcedureMapProcedureMap

BlockInfoBlockInfo

ClassInfoClassInfo
HashTblHashTbl

-_symbolSize:int
-_symbolTbl:SymbolTbl
-_moduleSet:ModuleSet
<<create>>-sysSymbols()
<<destory>>-sysSymbols()
+addMdl(name:string,table:MdlSymbol):bool
+delMdl(name:string):void
+isMdlDefined(name:string):bool
+findSymbol(id:int):MdlSymbol
...

-_sysSymbols:sysSymbols
-_nIncludedFileNum:int
-_constants:ValueMap
-_gbVariable:varValueTbl
-_procedureMap:ProcedureMap
<<create>>-TDfile()
<<destory>>-TDfile()
+setsysSymbols(sysSymbols: syssymbols):void
+getIncludeFile(fileName:string): void
+getSysSymbols():sysSymbols
+getFileTag(path: std::string): int
+addConstant(id: int, value: value): void
+addGlobalvariable(id: int, value: value): void
+addProcedure(id: int, procedure: Procedure): void
+getBlockInfo(num:int,id: int,blkInfo: BlockInfo):void

-_varValueTblSize: int+GetvarTblSize(): int

+GetvarTblSize(): int
+Storevarvalue(data: value):void
+ReleaseVarValue(data: value): void

-_clsNum: int

t+GetClsNum(): int
+ReleaseData(): void

-_prcdNum: int

+GetPrcdNum():int
+ReleaseData(): void

-_blockId: int
-_elmtNum: int
-_superClass: ClassInfo
-_fileTag: int

<<create>>-BlockInfo()
<<destroy>>-BlockInfo()
+addEImt(): void
+delEImt(): void

-_classId: int
-_superClass: CassInfo
-_initcode: Instruction
-_fileTag: int

<<create>>-ClassInfo()
<<destroy>>-ClassInfo()
+getClassId(): int
+getSuperClass(): ClassInfo
+setInitCode(code: Instruction): void
+getInitCode(): Instruction

#HashTBL_SIZE: int
#_table: HashBucket
<<create>>-HashTbl()
<<destroy>>-HashTbi()
+getData(index: int): Data
+insertData(index: int, data: Data): void
+addDataFromMap(src: HashTbl<Data, SIZE>): void
+clearTbl(data, HashTBL_SIZE): bool
+StoreTbidata(data,HashTBL_SIzE): bool
...

FIGURE 6.7 Design of test description management class CTDfile.

information and global procedure, class, constant and value letters,
and the design of CTDfile is given in Figure 6.7.

• The compilation process class CCompiler is mainly responsible for
handling the tasks related to compiling the current test description
file, which contains the lexical parser CLexer class and the syntax
parser CParser class. The design of the CCompiler class is given in
Figure 6.8.

Based on the above design, then the pre-processing process of the
test description is as follows:

• The main function calls the test description file loaded by the global
method, and sets the file entry procedure name to “main”.

• Instantiate an object of CTDfile class and set it as the current test
description file curTdfile to be compiled, instantiate an object of
compiler class, which calls its own compileFile method to compile
curTdfile test description file, and the compilation process needs to

Real-Time Embedded Software System    ◾    235

ErrorError

CompilerCompiler

<<Union> >
symbolType
<<Union>>

symbolType

<<Struct>>
ArrayNode
<<Struct>>
ArrayNode

<<Struct>>
symbolInfo
<<Struct>>
symbolInfo

IstrnBufferIstrnBuffer

<<Struct>>
Instruction
<<Struct>>
Instruction << Union >>

InstrnPra
<<Union>>
InstrnPra

ParserParser

LexerLexer

<<Struct>>
ContextInfo
<<Struct>>

ContextInfo

11

1

1...*

1

1...*

1

0...*

1

1

0...*

1

0...*1
1

-_msgMaxNum: int
-_message: std ::string
<<create>> -Error(...)
+getMsg(): string
+ClrErrlst(): void
+SetMaxMsgNum(num:int): void

_parser: Parser
-_rootNode: ArrayNode
-_curObject: int
<<create> > -compiler()
<<destroy> >-compiler()
+compileFile(fileName: string): bool
-initializevariables(): void
-getSymbolInfo(symb:syssymbols): void
-generatecode(): bool
-generateObject(): bool
-generateobject(): bool
-generateExpression(): bool
-generateFunction(): bool
-ReleaseData(): bool
-generateObject(): bool -generateobject(): bool
-generateExpression(): bool
-generateFunction(): bool -ReleaseData(): bool

+symb_BLANK
+symb_IDENTIFIER
+symb_KEYWORD
+symb_CONST
+symb_VARIABLE
+symb_EXPRESSION
+symb_FUNCTION
+symb_OBJECT
...

+_array:ArrayType
+_child: ArrayNode
+_token: TokenType
+_varType: int
+_codeline: string
+...
<<create>>+ArrayNode()
<<destroy>>+ArrayNode()
+...()

+_id: int
+_symbType: symboltype
+_symbName: string
+_constant: value
+_globalVar: value

-_buffSize: int
-_buffer: Instruction
-_position: int
<<create> >-IstrnBuffer()
<<destroy>-IstrnBuffer()
+getBuffsize(): int
+addIstrn(op:IstrnCode):int
+addIstrn(op:IstrnCode,arg:int):int
+addIstrn(op:IstrnCode,ptr:ptr):int
+clearBuff():bool
+...()

+-op:IstrnCode
-_arg:int
-_ptr:const

-lexer: Lexer
-_lexerStack: LexerStack
-_stringArray: Array
...

<<create> > -Parser()
<<destroy>>-Parser()
+parseFile(filename:string): ArrayNode
+parseExprn(exprn:string): ArrayNode
+parselLine(strline:string):ArrayNode
+checkParErrors(array:ArrayNode):bool
+ReleaseData():bool
+...()

-_codestr: std::istream
-_tagNum: int
-_curLineNum: int
-_curChar: int
-_curToken: TokenType
...

<<create>>-Lexer()
<<destory>>-Lexer()
+getInteger(): int
+getFloat(): float
+getstring(): std::string
+getTag(): int
+nextToken(): void
+skipComment();
+getBlockInfo();
+outputToken():string
+BlockInfoDeal();

+_isvariable: bool
+_isFunction: bool
+_isConstant: bool
+...

FIGURE 6.8 Design of the test description compiler class CCompiler.

call lexical, syntactic and semantic analysis procedures, and finally
form the annotated syntax The compilation process needs to call
lexical, syntactic and semantic analysis procedures, and finally form
the annotated syntax tree, which is used as the basis for intermediate
instruction generation.

236    ◾    Embedded Software System Testing

 1. Lexical analysis process
The lexical analysis is mainly done by the CLexer class, whose

function is to scan the characters of the test description code, identify
various types of word tokens (tokens) according to the lexical rules
of RT-ESTDL, combine the relevant characters into word tokens and
output them (see Section 4.3.1 for token types and classification), and
perform lexical checking at the same time.

The main functions of the lexical analysis work are summarized
as follows:

• Filtering white characters such as spaces, tabs, lines, etc., filtering
comments, etc.

• Identifying reserved words: checking the reserved words table
and storing the corresponding categories.

• Identifying identifier: stores the user-defined identifier and the
value of the identifier itself.

• Spelling number: automatic identification of data types, storage
of categories and corresponding values.

• Spelling character: identification of characters or strings, storage
of categories and corresponding values.

• Spelling compound words (with operators, operators, etc.): e.g.
>=, <=, etc.

• Test description source program can be output on request
(screen).

The lexical analysis workflow is as follows:

 1. Starting from the first character of the test description code,
the characters are read in sequentially, white characters and
comments are filtered, and various types of word marks (e.g.,
keywords, identifiers) are identified based on the characters
read in, sometimes with a pre-reading ahead to complete the
identification of word marks (e.g., numeric constants, string
constants, compound operators/operators).

 2. Once the word marks are identified and their types deter-
mined, the characters are combined into words according to
lexical rules and output.

Real-Time Embedded Software System    ◾    237

 3. During the word combination process, a lexical check is per-
formed at the same time, and a compile-time lexical error
message is output if an error is found in the word composition.

 2. Grammatical analysis process
The task of syntactic analysis is to identify whether the sequence of

word symbols given by lexical analysis structurally conforms to the
given grammatical rules. The body of the test description code con-
sists of a series of statements, then the syntax analysis first deals with
the function declaration, and then with the function body composed
of statements, from the syntax to analyze each statement sentence
by sentence: when the syntax is correct, the intermediate instruction
code of the corresponding statement function is generated; when the
reference of the identifier is encountered, the symbol table is checked
to see if there is a correct definition, and if so, the corresponding
relevant information is taken from the table for The intermediate
instruction code is generated by the Parser class generateCode() and
other operations.

The grammar analysis is done by the CParser class, the core of
which is the process of generating a grammar tree, as shown in
Figure 6.9.

Since RT-ESTDL is structured with context-independent gram-
mars, i.e., type 2 grammars, the syntax is analyzed using a top-down
analysis method, recursive descent analysis, as follows:

A subroutine is written for each non-terminal symbol e in the
grammar, which accomplishes the task of analyzing and identifying
the grammatical components corresponding to that non-terminal
symbol. The function of the grammar analysis subroutine for a par-
ticular non-terminating symbol is to match the input string with the
right symbol string of the rule for that non-terminating symbol. The
analysis process is done by assigning tasks top-down by grammar
rules, i.e. by calling the relevant subroutine. When the compiler pro-
gram predicts that the next grammatical component is e based on
the grammar and the current input symbols, i.e., when it predicts
that the input symbol string to be matched can be matched by the
symbol string derived from e, it determines e as the target and calls
the subroutine for analyzing and identifying e. In the process of ana-
lyzing and identifying e, it is possible that other sub-targets are estab-
lished and the corresponding subroutines are called. Only when the

238    ◾    Embedded Software System Testing

loop end of the TDfileloop end of the TDfile

:Lexer:Parser :ArrayNode
std:ParseProc

out

1:parseFile()

4:getToken()

2:getTDFile()

3:ArrayRoot()

5:creatNode()

FIGURE 6.9 Test description syntax analysis process.

called subroutine for analyzing and identifying a grammatical com-
ponent matches the input string successfully and returns correctly,
the grammatical component is truly identified and the input string is
determined to be free of grammatical errors.

For the sake of space, this book only gives a flow chart of the
parseFile() process, as shown in Figure 6.10.

Once the Parser class obtains the lexical analysis results, it starts
the grammar analysis, recursively descending to generate the gram-
mar tree, during which it recursively obtains word marks and ana-
lyzes them to add them as nodes to the grammar tree. To facilitate
searching and traversal, the grammar tree in the execution engine is
managed as a binary tree.

Figure 6.11 gives an example of a test describing the grammar tree
generated by the grammar analysis.

Real-Time Embedded Software System    ◾    239

parseFile()

Backup global data, for recovery
when exiting the parseFile

procedure

nestLevel = 0?
(Whether the first entry?)

Y

Add default variables, functions

Global constant
processing

Is Token a type specification ?

Y

Is The function defined?

Variable
definition
processing

N

Is The function entity
defined?

Enroll in the symbol HASH
table (omit if already

registered)

Recursively calls the parseFile
procedure with nestLevel+1

Y

N

Backfill the process entry in the symbol
hash table

N

Generate open data section instruction,
and record the instruction location

Loop through the statement handler,
Generating Intermediate Instruction

Code until the end of the function
body symbol appears

Exit the parseFile procedure and recycle
the resources

Call the Output Intermediate
Code Instruction Function

Return

N

FIGURE 6.10 parseFile() processing.

 3. Semantic Analysis
The semantic analysis process is used to analyze the static seman-

tics of the test description, including declarations and type checking,
and the results are represented in the form of an annotated syntax
tree. In semantic analysis, the correctness of the test description code
structure is related to the context of that structure. The two issues
that semantic analysis focuses on during the design of the RT-ESTDL
test description execution engine are the identification of nested
scopes and the dynamic binding of data types, as described below:

 1. The solution to the problem of identifying nested scopes is to
record the context-related information in a symbol table, and

240    ◾    Embedded Software System Testing

V_INT

TOK_PROCEDURE

5

915

ARY_FILE

V_INT

TOK_PROCEDURE

5

915

ARY_FILE

V_CH
ILD

Null
TOK_ID

5

ARY_DECL_PRO
CEDURE

V_CH
ILD

Null
TOK_ID

5

ARY_DECL_PRO
CEDURE

V_CH
ILD

Null
TOK_ID

7

ARY_STAT_BLOC
K

V_CH
ILD

Null
TOK_ID

7

ARY_STAT_BLOC
K

V_CH
ILD

TOK_PROCEDUR
E

5

ARY_ROOT

V_CH
ILD

TOK_PROCEDUR
E

5

ARY_ROOT

V_NO
NE

TOK_CBRACKET

5

Null

ARY_NULL

V_NO
NE

TOK_CBRACKET

5

Null

ARY_NULL

V_INT

TOK_ID

5

915

ARY_ID

V_INT

TOK_ID

5

915

ARY_ID

V_CH
ILD

Null
TOK_ID

7

ARY_STAT_EXP

V_CH
ILD

Null
TOK_ID

7

ARY_STAT_EXP

V_CH
ILD

Null
TOK_CBRACKET

7

ARY_EXPLIST

V_CH
ILD

Null
TOK_CBRACKET

7

ARY_EXPLIST

V_CH
ILD

Null
TOK+OBRACKET

7

ARY_EXP_CALL

V_CH
ILD

Null
TOK+OBRACKET

7

ARY_EXP_CALL

V_IN
T

Null
TOK+QSTRING

7

0

ARY_CONST

V_IN
T

Null
TOK+QSTRING

7

0

ARY_CONST

V_IN
T

TOK_ID

7

ARY_ID

V_IN
T

TOK_ID

7

ARY_ID

...

...

...

print

print

...

...

...

print

print

Hi,RT-TEST\!\n ...Hi,RT-TEST\!\n ...

Symbol Table Dictionay
0

315

915

0 Const String Stack

HASH_TABLE_SIZE

FIGURE 6.11 Example of a syntax tree.

whenever a variable declaration is analyzed, the variable is pop-
ulated into the symbol table, which ensures that the variable
remains in the symbol table if the block in which it is declared is
visible during compilation. When a variable reference is encoun-
tered in that block, the symbol table can be consulted to deter-
mine if the variable conforms to the context of the RT-ESTDL.

 2. The lack of explicit declaration of data types is an important
feature of RT-ESTDL, which greatly improves the ease of use of

Real-Time Embedded Software System    ◾    241

RT-ESTDL and makes it easier for testers to write test descrip-
tions. The execution engine uses dynamic binding to accomplish
consistent conversion of data types for operands in assignment
statements.

 4. Intermediate instruction generation
In virtual machine-based real-time embedded software testing, the
technique of separating the front-end and back-end of the test descrip-
tion execution engine is used in order to achieve portability of the test
description on different running platforms, as described below.

 1. The pre-processing process of the test description execution
engine (including test description loading, lexical analysis, syn-
tax analysis, semantic analysis and intermediate instruction
generation) can be called the front-end of the engine, while the
execution process that relies on real-time OS instruction set pro-
cessing can be called the back-end. Theoretically, this means that
porting the intermediate instruction sequences generated by the
approved test descriptions to a new platform requires only the
development of a new back-end.

 2. Suppose that m different languages need to be implemented on
n platforms, and that m*n different execution engines need to be
written if the intermediate code instruction form is not used. If
the front-end and back-end separation approach is used, only m
front-ends and n back-ends are needed. By choosing the appro-
priate front-ends and back-ends, so that intermediate instruc-
tions can be executed on the back-end, it can be transformed
from m*n different execution engines to a combination of m+n
parts by using the above approach.

From the above analysis, it can be seen that as the interface
between the front-end and back-end of the test description execu-
tion engine, the description of intermediate instructions must have
sufficient expressive ability. Common methods for describing inter-
mediate instructions include Reverse Polish notation, three address
statements, abstract syntax trees, directed acyclic graphs, and
abstract stack machine code. To improve the execution efficiency of
the test description execution engine, an abstract stack machine code
is adopted as the intermediate instruction representation, with the
structure as follows:

242    ◾    Embedded Software System Testing

struct Instruction{
 IstrnCode _op; // Instruction Type
 union { int _arg; // Command parameters
 const void* _ptr; // Citation Data
 }; };

where _op represents the type of instruction represented in that
middle, and the value _arg or _ptr in the union, depending on the
instruction type, is used as additional information to complement
the specific meaning of that instruction. The set of test description
execution engine instructions is shown in Table 6.4.

In terms of portability, the use of intermediate instructions avoids
direct data transfer between the test description generation system
and the execution system, allowing user-written test descriptions to
be executed on all platforms that can correctly load the test descrip-
tion execution engine, thus greatly improving portability.

 5. Symbol table management
The role of the symbol table in the compilation process is to check

the semantic correctness and to assist in the correct generation of
intermediate instructions. These two roles are achieved by inserting
and retrieving test description variable attributes in the symbol table.
These attributes, such as name, scope, and dimension, are found
directly in the declaration or can be obtained indirectly depend-
ing on the context in which the name appears in the test description
code.

For efficiency and implementation solution reasons, the test
description execution engine chooses the form of a hash table to
organize the symbol table. Also, since the test description size is gen-
erally small, the pathological behavior of constant conflict in hashing
does not often occur, thus ensuring a theoretical O(1) average access
cost.

The two core issues in hash table implementation are analyzed as
follows:

 1. Hash function produces uniformly distributed integers
Since the hash table technology has been practically applied

in the practice of compiler construction for many years, a large
amount of data has been accumulated, and there are numerous
theoretical and practical studies. The hash functions selected in

Real-Time Embedded Software System    ◾    243
TA

B
LE

 6
.4

Te

st
 D

es
cr

ip
tio

n
Ex

ec
ut

io
n

En
gi

ne
 In

st
ru

ct
io

n
Se

t

D
ir

ec
tiv

es
Ex

pl
an

at
io

n
R

em
ar

k

IS
TR

N
_R

ET
U

RN
Re

tu
rn

 In
st

ru
ct

io
n

Pr
oc

ed
ur

e
Re

tu
rn

IS
TR

N
_E

N
D

En
d

in
st

ru
ct

io
n

Te
st

 d
es

cr
ip

tio
n

ex
ec

ut
io

n
te

rm
in

at
io

n
IS

TR
N

_P
U

SH
_C

O
N

ST
C

on
st

an
t o

n
th

e
st

ac
k

C
on

st
an

t v
al

ue
 is

 th
e

va
lu

e
of

 _
pt

r
IS

TR
N

_P
U

SH
_G

VA
R

G
lo

ba
l v

ar
ia

bl
e

on
 st

ac
k

H
as

h
in

de
x

of
 g

lo
ba

l v
ar

ia
bl

e
id

 in
 sy

m
bo

l t
ab

le
 st

or
ed

 in
 _

ar
g

IS
TR

N
_P

U
SH

_L
VA

R
Lo

ca
l v

ar
ia

bl
e

on
 th

e
st

ac
k

H
as

h
in

de
x

of
 th

e
lo

ca
l v

ar
ia

bl
e

id
 in

 th
e

sy
m

bo
l t

ab
le

 is
 st

or
ed

 in
 _

ar
g

IS
TR

N
_P

U
SH

_A
RG

pa
ra

m
et

er
 o

n
st

ac
k

ha
sh

 in
de

x
of

 p
ar

am
et

er
 n

am
e

in
 sy

m
bo

l t
ab

le
 in

 _
ar

g
IS

TR
N

_A
SS

IG
N

A
ss

ig
nm

en
t o

pe
ra

tio
n

Th
e

va
lu

e
is

st
or

ed
 at

 th
e

to
p

of
 th

e
da

ta
 st

ac
k

IS
TR

N
_A

SS
IG

N
_I

N
PL

A
C

E
D

ec
la

re
 a

nd
 a

ss
ig

n
th

e
va

lu
e

to
 _

pt
r

IS
TR

N
_L

IN
E

Cu
rr

en
t n

um
be

r o
f l

in
es

 p
ro

ce
ss

ed
IS

TR
N

_R
EF

_G
VA

R
Re

fe
re

nc
e

gl
ob

al
 v

ar
ia

bl
e

H
as

h
in

de
x

of
 g

lo
ba

l v
ar

ia
bl

e
id

 in
 sy

m
bo

l t
ab

le
 is

 st
or

ed
 in

 _
ar

g
IS

TR
N

_R
EF

_L
VA

R
Re

fe
re

nc
e

to
 lo

ca
l v

ar
ia

bl
e

H
as

h
in

de
x

va
lu

e
of

 lo
ca

l v
ar

ia
bl

e
id

 in
 sy

m
bo

l t
ab

le
 st

or
ed

 in
 _

ar
g

IS
TR

N
_R

EF
_M

EM
BE

R
Re

fe
re

nc
e

ob
je

ct
 m

em
be

r
Th

e
ha

sh
 in

de
x

of
 th

e
ob

je
ct

 m
em

be
r i

d
in

 th
e

sy
m

bo
l t

ab
le

 is
 st

or
ed

 in
 _

ar
g

IS
TR

N
_R

EF
_E

LE
M

EN
T

Re
fe

re
nc

e
to

 a
n

el
em

en
t o

f a
n

Th
e

in
de

x
va

lu
e

of
 th

e
el

em
en

t i
s s

to
re

d
in

 _
ar

g
ar

ra
y

IS
TR

N
_R

EF
_C

O
M

PO
N

EN
T

Re
fe

re
nc

e
to

 a
 co

m
po

ne
nt

 o
f a

va

lu
e

Th
e

in
de

x
va

lu
e

of
 th

e
co

m
po

ne
nt

 is
 st

or
ed

 in
 _

ar
g

co
m

po
sit

e
IS

TR
N

_P
O

P
To

p
of

 th
e

da
ta

 st
ac

k
is

un
st

ac
ke

d
IS

TR
N

_G
ET

_M
EM

BE
R

G
et

 o
bj

ec
t m

em
be

r
Th

e
in

de
x

va
lu

e
of

 th
e

ha
sh

 o
f t

he
 o

bj
ec

t m
em

be
r i

d
in

 th
e

sy
m

bo
l t

ab
le

 is

st
or

ed
 in

 _
ar

g
IS

TR
N

_G
ET

_E
LE

M
EN

T
G

et
 th

e
el

em
en

t o
f a

n
ar

ra
y

Th
e

in
de

x
va

lu
e

of
 th

e
el

em
en

t i
s s

to
re

d
in

 _
ar

g
IS

TR
N

_G
ET

_C
O

M
PO

N
EN

T
G

et
 th

e
co

m
po

ne
nt

 o
f a

 co
m

po
un

d
Th

e
in

de
x

va
lu

e
of

 th
e

co
m

po
ne

nt
 is

 st
or

ed
 in

 _
ar

g
va

lu
e

IS
TR

N
_N

EW
_O

BJ
EC

T
A

ss
ig

n
a

ne
w

 o
bj

ec
t

Th
e

ha
sh

 in
de

x
of

 th
e

ob
je

ct
 id

 in
 th

e
sy

m
bo

l t
ab

le
 is

 st
or

ed
 in

 _
ar

g
IS

TR
N

_N
EW

_A
RR

AY
A

llo
ca

te
 a

 n
ew

 a
rr

ay
Th

e
ha

sh
 in

de
x

va
lu

e
of

 th
e

ar
ra

y
id

 in
 th

e
sy

m
bo

l t
ab

le
 is

 st
or

ed
 in

 _
ar

g
IS

TR
N

_M
A

K
E_

C
O

M
PO

U
N

D
D

ec
la

re
 a

 n
ew

 co
m

po
un

d
da

ta
Th

e
ha

sh
 in

de
x

va
lu

e
of

 th
e

co
m

po
sit

e
id

 in
 th

e
sy

m
bo

l t
ab

le
 is

 st
or

ed
 in

 _
ar

g
(C

on
tin

ue
d)

244    ◾    Embedded Software System Testing
TA

B
LE

 6
.4

 (C
on

tin
ue

d)
 

Te
st

 D
es

cr
ip

tio
n

Ex
ec

ut
io

n
En

gi
ne

 In
st

ru
ct

io
n

Se
t

D
ir

ec
tiv

es
Ex

pl
an

at
io

n
R

em
ar

k

IS
TR

N
_M

A
K

E_
FU

N
C

TI
O

N
D

ec
la

re
 a

 n
ew

 fu
nc

tio
n

Th
e

ha
sh

 in
de

x
va

lu
e

of
 th

e
fu

nc
tio

n
id

 in
 th

e
sy

m
bo

l t
ab

le
 is

 st
or

ed
 in

 _
ar

g
IS

TR
N

_I
N

IT
_A

RR
AY

In
iti

al
iz

in
g

ar
ra

ys
Th

e
nu

m
be

r o
f e

le
m

en
ts

 o
f t

he
 a

rr
ay

 is
 st

or
ed

 in
 _

ar
g

IS
TR

N
_I

N
IT

_O
BJ

EC
T

In
iti

al
iz

in
g

ob
je

ct
s

O
bj

ec
t c

on
st

ru
ct

io
n

pa
ra

m
et

er
s a

re
 st

or
ed

 in
 _

ar
g

IS
TR

N
_I

N
IT

_M
EM

BE
R

In
iti

al
iz

e
m

em
be

rs
Th

e
ha

sh
 in

de
x

va
lu

e
of

 th
e

m
em

be
r i

d
in

 th
e

sy
m

bo
l t

ab
le

 is
 st

or
ed

 in
 _

ar
g

IS
TR

N
_P

RE
_I

N
C

D
EC

Fr
on

t s
el

f-
in

cr
ea

sin
g

an
d

se
lf-

de
cr

ea
sin

g
Th

e
ha

sh
 in

de
x

va
lu

e
of

 th
e

va
ria

bl
e

id
 in

 th
e

sy
m

bo
l t

ab
le

 is
 st

or
ed

 in
 _

ar
g

IS
TR

N
_P

O
ST

_I
N

C
D

EC
Se

lf-
in

cr
ea

sin
g

an
d

de
cr

ea
sin

g
po

st
er

io
r

Th
e

ha
sh

 in
de

x
va

lu
e

of
 th

e
va

ria
bl

e
id

 in
 th

e
sy

m
bo

l t
ab

le
 is

 st
or

ed
 in

 _
ar

g

IS
TR

N
_C

A
LL

_F
U

N
C

C
al

lin
g

fu
nc

tio
ns

Th
e

ha
sh

 in
de

x
va

lu
e

of
 th

e
fu

nc
tio

n
id

 in
 th

e
sy

m
bo

l t
ab

le
 is

 st
or

ed
 in

 _
ar

g
IS

TR
N

_C
A

LL
_P

RO
C

C
al

lin
g

pr
oc

es
s

Th
e

ha
sh

 in
de

x
va

lu
e

of
 th

e
pr

oc
ed

ur
e

id
 in

 th
e

sy
m

bo
l t

ab
le

 is
 st

or
ed

 in
 _

ar
g

IS
TR

N
_O

P_
0

Ze
ro

 E
le

m
en

t O
pe

ra
to

rs
Th

e
op

er
at

or
 p

oi
nt

er
 is

 st
or

ed
 in

 _
pt

r
IS

TR
N

_O
P_

1
U

na
ry

 O
pe

ra
to

rs
IS

TR
N

_O
P_

2
IS

TR
N

_O
P_

3
IS

TR
N

_O
P_

4

Bi
na

ry
 O

pe
ra

to
rs

Te
rn

ar
y

O
pe

ra
to

rs
Q

ua
dr

at
ic

 O
pe

ra
to

rs

O
pe

ra
nd

 p
oi

nt
er

s a
re

 st
or

ed
 in

 _
pt

r
O

pe
ra

nd
s a

re
 re

m
ov

ed
 fr

om
 th

e
da

ta
 st

ac
k

in
 re

ve
rs

e
or

de
r u

sin
g

IN
ST

R_
PO

P
IS

TR
N

_O
P_

5
Q

ui
nt

up
le

t O
pe

ra
to

rs
IS

TR
N

_J
M

P
U

nc
on

di
tio

na
l j

um
pi

ng
IS

TR
N

_J
M

P_
TR

U
E

Ju
m

p
w

he
n

co
nd

iti
on

 is
 tr

ue
IS

TR
N

_J
M

P_
FA

LS
E

IS
TR

N
_J

M
P_

C
A

SE
Ju

m
p

w
he

n
co

nd
iti

on
 is

 fa
lse

Ju
m

p
w

he
n

ca
se

 co
nd

iti
on

 is
 m

et
Th

e
ju

m
p

ad
dr

es
s i

s s
to

re
d

in
 _

ar
g

Ju
dg

m
en

t c
on

di
tio

ns
 a

re
 st

or
ed

 at
 th

e
to

p
of

 th
e

da
ta

 st
ac

k
IS

TR
N

_J
M

P_
A

N
D

Ju
m

p
w

he
n

al
l c

on
di

tio
ns

 a
re

 m
et

at

 th
e

sa
m

e
tim

e
IS

TR
N

_J
M

P_
O

R
Ju

m
p

w
he

n
an

y
of

 th
e

co
nd

iti
on

s
ar

e
m

et
IS

TR
N

_F
O

RC
E_

BO
O

L
Fo

rc
e

ar
bi

tr
ar

y
va

lu
es

 to
 B

oo
le

an

va
lu

es
 fo

r l
og

ic
al

 o
pe

ra
tio

ns
Th

e
va

lu
e

is
st

or
ed

 at
 th

e
to

p
of

 th
e

st
ac

k

Real-Time Embedded Software System    ◾    245

the design process of the RT-ESTDL test description execution
engine are shown below.

static long calStrHash(const CString string){
 unsigned long lhash = 5381;
 int ilen = string.GetLength();
 for (int i=0; i<ilen; i++){
 lhash = (lhash << 5) + lhash + string[i];
 }
 return hash % HASH_SIZE; }

Validation of the test data shows that multiplication factors 31
and 37 are the two better choices. However, the multiplication
factor 32 is used in this test description execution engine because
using 32 as a multiplication shifts the binary by 5 bits implemen-
tation, so that the time saved in computing the hash function can
be used to compensate for the resulting slight disturbance to the
uniformly distributed function.

 2. Conflict resolution
There are two methods for resolving hash table conflicts,

namely the split-link method and the open-address method: the
split-link method stores a linked table at each index and uses
the linked table to hold all conflicting data; this method maxi-
mizes execution efficiency in the case of fewer conflicts; the open-
address method is a method for resolving conflicts without using
a linked table and has a more complex algorithm. In the open-
addressing hash algorithm system, if a conflict occurs, both try to
select another unit until the empty unit is found. Depending on
the choice of conflict resolution function, it can be further divided
into linear detection, square detection and double hashing meth-
ods. Due to the limited size of the RT-ESTDL test description,
the possibility of conflict is small, and considering the execution
efficiency and simplicity of the scheme, the split-link method is
selected as the conflict solution.

6.5.3 Test Scheduling Process

According to the discussion on scheduling policy selection in Section
6.3.3, the segment-based single rate scheduling policy SBRMS (Segment-
Based Rate Monotonic Scheduling) algorithm is used in this book to test

246    ◾    Embedded Software System Testing

the scheduling process for describing task execution, which is an improved
RMS scheduling policy, i.e., based on RMS, introducing the (sub)segment
concept, the SBRMS scheduling timing is determined by the following
algorithm.

 if ((Base Segment Counter%Task Period ==
 Task Segment Offset) &&(Subsegment

Counter
 == Subsegment Offset))
 Schedule(Task);

From the above equation, it can be seen that a task is scheduled if its seg-
ment offset and subsegment offset are met at the current moment, other-
wise it is not scheduled. The experimental validation shows that SBRMS
is not only able to describe and implement the data dependencies in the
execution of each task, but also has good stability and predictability.

Figure 6.12 gives a schematic diagram of the test task scheduling pro-
cess based on the SBRMS scheduling policy.

t0

t2

t1

Intermediate
instruction
sequence 1

Engine

dispatch

START ()

START ()

START ()

START ()

Intermediate
instruction
sequence 2

Intermediate
instruction
sequence 3

Intermediate
instruction
sequence 4

DONE ()

DONE ()

DONE ()

DONE ()

FIGURE 6.12 SBRMS-based test task scheduling execution schematic.

Real-Time Embedded Software System    ◾    247

6.5.4 Test Description Execution Process

The test description execution process is the core component of the test
description execution engine. Its important function is to cooperate with
the scheduling process to complete the real-time parsing of test intermedi-
ate instructions and drive the test process.

After the test description code is compiled, the execution process of
intermediate instructions is implemented by the test description execution
class CExecuter (as shown in Figure 6.13). The execution process of the test
description is in the form of an abstract stacker that executes the sequence
of intermediate instructions already generated by the compilation process.
Its main function is to dynamically maintain the stack (registers) of the
abstract stacker because the execution engine must promptly reclaim the
stack occupied by the test tasks that have finished running and maintain
a complete address operation space for each running and soon-to-be run-
ning test task. It then loads the intermediate instruction code of the test
task that is about to run, calls the intermediate instruction code handler
(by operations such as executeInstrn() of the Executer class) to complete
its function, and also catches and handles errors during the execution of
intermediate instructions in real time.

FIGURE 6.13 Design of the test description execution class CExecuter.

248    ◾    Embedded Software System Testing

6.5.5 Execution of Online Test Descriptions

During the initialization of the RT-ESSTE test execution system, the cre-
ation of onlineTDExeTask, an online test description execution task, is
completed first, and the task is put in a pending state.

When testers download test instructions (test descriptions) online
according to test needs in the testing process, the external service of the test
execution system obtains the online task and activates onlineTDExeTask,
which calls the corresponding lexical analysis program, syntax analysis
program and semantic analysis program to complete the pre-processing
of test descriptions and generate the online task named onlineTDExeTask,
which calls the corresponding lexical analysis program, syntax analysis
program and semantic analysis program to complete the pre-processing of
the test description and generate the sequence of intermediate instructions
for the online task, which is finally executed by the scheduler. Figure 6.14
shows the execution process of the online test task.

6.5.6 Test Execution Engine Efficiency Analysis

To verify whether the test description execution engine can meet the real-
time requirements of embedded software testing, this book analyzes the

Is there an

online task ?

onlineTDExeTask

the processing task is

suspended

Online task

preprocessing

Scheduling execution

in real time

The execution completes

normally or an exception

is thrown

Real-time scheduling

of test tasks

N

Y

Resource recovery

FIGURE 6.14 Online test task execution process.

Real-Time Embedded Software System    ◾    249

execution efficiency of RT-ESTDEE with the help of the performance test-
ing tool CodeTEST. The efficiency analysis analyzes the execution effi-
ciency of the engine from two aspects:

• Examine the execution time of individual test description files of dif-
ferent sizes.

• Examine the time for concurrent execution of multiple test descrip-
tions given a medium-sized test description code (30 lines, nested
loop statements).

The test describes the environment configuration used to perform the
engine efficiency analysis as follows:

• IPC (lower computer): CPU Pentium4/2.8GHz Memory 1G, hard
disk: 320G;

• Hardware interface: MIL-STD1553B, ARINC429, RS422, AD/DA;

• Real-time operating system: vxWorks 5.4 (X86).

After analyzing the above test execution efficiency analysis experiments,
Figure 6.15 gives the test description execution time for different sizes, and

test description code size

e
e

mi
t

n
oi

t
u

c
e

x
(m

s)

FIGURE 6.15 Execution time for different sizes of test descriptions.

250    ◾    Embedded Software System Testing

Figure 6.16 gives the concurrent execution time for multiple test descrip-
tions of medium size.

Through the analysis of the execution efficiency of the test description
execution engine, it can be seen that the execution time of the execu-
tion engine for medium-sized (as a special test description language,
RT-ESTDL statements have been highly abstracted and integrated, and
the size of test descriptions is generally less than 50 lines) test descrip-
tions is less than 1 millisecond, and since the execution engine supports
the sequential and concurrent execution mechanism of multiple test
descriptions, it can fully meet the requirements of real-time embedded
software (real-time requirements are generally of millisecond level) for
real-time and concurrent testing. Therefore, by reasonably controlling
the scale of test descriptions and the number of concurrent executions,
it can fully meet the requirements of real-time embedded software (real-
time requirements are generally milliseconds) testing for real-time and
concurrent characteristics.

number of concurrent test descriptions

e
mi

t
n

oi
t

u
c

e
x

e
(

s
m

)

FIGURE 6.16  Medium-scale multiple tests depicting concurrent execution times.

Real-Time Embedded Software System    ◾    251

6.6 SUMMARY
In this chapter, the design of a real-time embedded simulation test envi-
ronment based on a virtual machine is proposed, the definition and
design of a real-time embedded software simulation test virtual machine
specification is given, and a real-time embedded software simulation test
environment based on this specification is designed and implemented.
Then the detailed design of real-time embedded software test descrip-
tion execution engine RT-ESTEE is presented, specifically including the
overall structure design, pre-processing process, scheduling process and
execution process (Including online test task execution), and the execu-
tion efficiency of the test description execution system is evaluated.

https://taylorandfrancis.com

253

C h a p t e r 7

Case Study of Real-Time
Embedded Software
System Testing

To better enable readers to understand and master the embedded
software system testing techniques proposed in this book, this chap-

ter selects a combined inertial/satellite navigation system software as the
application object and completes the whole process from system model
construction, static/dynamic modeling based on UML real-time exten-
sion, to test sequence/use case, test description generation, until test exe-
cution and test result analysis.

7.1 INTRODUCTION TO THE SYSTEM UNDER TEST
7.1.1 I/GNS System Overview

Inertial/GPS Navigation System (I/GNS) is a special real-time c ontrol
software developed for autonomous full-attitude inertial/satellite
 combined navigation system used in civil airliners, which can provide
acceleration, velocity, position, heading, attitude, and time information
after aligning to navigation, and has the functions of combined inertial/
satellite navigation, pure GPS navigation, position/altitude correction,
NAV backup, APR working mode, end-of-flight mode and parameter
calibration, etc. Its navigation accuracy will affect the accuracy of the
integrated avionics system.

DOI: 10.1201/9781003390923-8

https://doi.org/10.1201/9781003390923-8

254    ◾    Embedded Software System Testing

As an important part of a typical real-time embedded system, the soft-
ware running in a combined inertial/satellite navigation system (Inertial/
GPS Navigation System Software (I/GNSS)) is typical of real-time embed-
ded software, which is solidified in the static memory of the system, and
the correctness of program operation is related to both logical correct-
ness and real-time. The correctness of program operation is related to both
logical correctness and real time.

Typical features of I/GNS systems are as follows:

 a. With high real-time requirements, the time period required is 25 ms.

 b. Multiple operating state modes and operational processes exist, and
the state migration conditions are complex.

 c. Data exchange with a variety of avionics systems (see Figure 7.1):
e.g., radar, flight control, visual control, mission computer, and data
transmission equipment.

 d. With a variety of data transmission protocols: such as ARINC429
bus, 1553B bus, and RS422.

Inertial/

GPS

Navigation

System

Display Control and

Management Processor

DCMP

Central Air Data Computer

CADC

Flight Control System

FCS

Mission Computer

MC

Data Transfer Equipment

DTE

Mission Computer

MC

Flight Control Subsystem

FCS

Radar Subsystem

RDR

Communication Navigation

and Identification

CNI

Plug-in Management Subsystem

SMS

Head-Up Display

HUD
airport

parameters

airport

parameters

airport

parameters

atmospheric

data

binding flight plan

correction control

control display command

flight

parameters

flight

parameters

flight

parameters

flight

parameters

flight

parameters

flight

parameters

navigation mode control
state selection

FIGURE 7.1 I/GNS system equipment cross-connection schematic.

Case Study of Real-Time Embedded Software System Testing    ◾    255

7.1.2 Main Functions and Performance

 1. The main functions of the I/GNS system software are:

• System self-test, including power-on start-up self-test PBIT, cycle
self-test BIT, and start-up self-test IBIT.

• Alignment status, including normal compass alignment, stored
heading alignment, and input heading alignment.

• Calibration status, including calibration of acceleration param-
eters and gyro parameters.

• Attitude status, providing attitude information.

• Navigation status, including external data transmission, com-
bined inertial/satellite navigation, pure inertial navigation, pure
GPS navigation; navigation mode control, including backup sta-
tus, approach status, and end-of-flight status.

• System maintenance status, including ground maintenance, air
maintenance, and maintenance work display.

• Other functions, including process control, status request, PFL
request, alignment data display request, position correction, and
data modification.

 2. The main features of the I/GNS system software are:

• The system software timing accuracy is 5 ms.

• Send navigation parameters externally 60 times per second with
no loss of accuracy in data transmission.

• CPU margin greater than 30% at peak system load.

• Storage margin of 30%.

7.2 I/GNS SYSTEM STATIC MODELING
7.2.1 Cross-Linked Device Model Construction

According to Figure 7.1, the I/GNS system is a subsystem of the avion-
ics system, and there are more devices cross-linked with it. According
to the software requirement specification and the ICD document, the

256    ◾    Embedded Software System Testing

interface data information of the I/GNS system that should be inter-
faced with other avionics subsystems/devices is analyzed, as shown in
Appendix 3. According to the data interface information specified in
the ICD document, the equipment cross-linking relationship diagram
of the I/GNS system can be established as shown in Figure 7.2. The
equipment object cross-linking relationship diagram after static model-
ing based on extended UML class diagram is used for each equipment
as shown in Figure 7.3.

7.2.2  Test Description of the Static Model

Based on the above analysis, combined with the RT-ESTDL support for
real-time embedded device modeling (see Section 4.4.1 of this book), a test
description of the static model of the I/GNS system software can be com-
pleted, as shown in Table 7.1.

<<AVIEqpmt>>
CADC

<<AVIEqpmt>>
CADC

<<AVIEqpmt>>
SMS

<<AVIEqpmt>>
SMS

<<AVIEqpmt>>
CNI

<<AVIEqpmt>>
CNI

<<AVIEqpmt>>
DCMP

<<AVIEqpmt>>
DCMP

<<AVIEqpmt>>
MC

<<AVIEqpmt>>
MC

<<AVIEqpmt>>
FCS

<<AVIEqpmt>>
FCS

<<AVIEqpmt>>
DTE

<<AVIEqpmt>>
DTE

I/GINS
<<AVIEqpmt>>

I/GINS

<<AVIEqpmt>>
RDR

<<AVIEqpmt>>
RDR

<<Link>>
DL

<<Link>>
1553B

<<Link>>
1553B

<<Link>>
1553B

<<Link>>
1553B

<<Link>>
1553B

<<Link>>
1553B<<Link>>

1553B

<<Link>>
1553B

<<Link>>
1553B

FIGURE 7.2  I/GNS system cross-linking relationship.

Case Study of Real-Time Embedded Software System Testing    ◾    257

<<AVIEqpmt>>
AvionioEqpmt
<<AVIEqpmt>>
AvionioEqpmt

- IsSUT: BOOL
- Eqpmt_ID: var
- ioDataVar: AVIIODATAVAR
- ioLink: AVIIODATAVAR

. . .
- ioDataVar: AVIIOLINK

InitEqpmt()(ioData, ioLInk)
StartEqpmt()
SendDataValue()
GetDataValue()

<<AVIEqpmt>>
I/GNS

<<AVIEqpmt>>
I/GNS

- IsSUT: BOOL=TRUE
- Eqpmt_ID="IGNS"
- ioLink.ioType="MIL-STD_1553B"
-APP : var
-WOW : var
-ADIN_01_00 : 1553BBLOCK
-DCIN_00_00 : 1553BBLOCK
-DCIN_01_01 : 1553BBLOCK
-DCIN_01_02 : 1553BBLOCK
-DCIN_01_03 : 1553BBLOCK
-DCIN_01_04 : 1553BBLOCK
-DCIN_03_00 : 1553BBLOCK
-DCIN_20_01 : 1553BBLOCK
-DCIN_20_02 : 1553BBLOCK
-DCIN_20_04 : 1553BBLOCK
-DCIN_20_05 : 1553BBLOCK
-DCIN_20_08 : 1553BBLOCK
-DCIN_01_00 : 1553BBLOCK
-DCIN_02_00 : 1553BBLOCK
-MCIN_00_00 : 1553BBLOCK
. . .

<<AVIEqpmt>>
DCMP

<<AVIEqpmt>>
DCMP

- IsSUT: BOOL=FALSE
...
-INDC_00_00 : 1553BBLOCK
-INDC_01_00 : 1553BBLOCK
-INDC_02_00 : 1553BBLOCK
-INDC_03_00 : 1553BBLOCK
-INDC_04_00 : 1553BBLOCK
-INDC_19_00 : 1553BBLOCK
-INDC_20_01 : 1553BBLOCK
-INDC_20_02 : 1553BBLOCK
-INDC_20_03 : 1553BBLOCK
-INDC_20_04 : 1553BBLOCK
-INDC_20_05 : 1553BBLOCK
-INDC_20_08 : 1553BBLOCK
. . .

<<AVIEqpmt>>
MC

<<AVIEqpmt>>
MC

- IsSUT: BOOL=FALSE
...
-INFC_01_00 : 1553BBLOCK
-INMC_00_00 : 1553BBLOCK
-INMC_01_00 : 1553BBLOCK
. . .

<<AVIEqpmt>>
SMS

<<AVIEqpmt>>
SMS

- IsSUT: BOOL=FALSE
...
-INSM_01_00 : 1553BBLOCK
-INSM_02_00 : 1553BBLOCK
. . .

<<AVIEqpmt>>
RDR

<<AVIEqpmt>>
RDR

- IsSUT: BOOL=FALSE
...
-INPD_00_00 : 1553BBLOCK
-INPD_01_00 : 1553BBLOCK
. . .

<<AVIEqpmt>>
CADC

<<AVIEqpmt>>
CADC

- IsSUT: BOOL=FALSE
...
-INAD_00_00 : 1553BBLOCK

<<AVIEqpmt>>
FCS

<<AVIEqpmt>>
FCS

- IsSUT: BOOL=FALSE
...
-INFC_01_00 : 1553BBLOCK

<<AVIEqpmt>>
CNI

<<AVIEqpmt>>
CNI

- IsSUT: BOOL=FALSE
...
-INCN_00_00 : 1553BBLOCK

<<AVIEqpmt>>
CADC

<<AVIEqpmt>>
CADC

- IsSUT: BOOL=FALSE
...
-INDT_01_00 : 1553BBLOCK
-INDT_03_00 : 1553BBLOCK
-INDT_19_00 : 1553BBLOCK

FIGURE 7.3 I/GNS and its cross-linking device static model.

TABLE 7.1 RT-ESTDL Description for Static Modeling of the I/GNS System

// avioniceqpmt.mdl
using “RT-ESTDL.mdl”
using “aviiodatavar.mdl”
using “aviiolink.mdl”
using “1553bBlock.mdl”

(Continued)

258    ◾    Embedded Software System Testing

TABLE 7.1 (Continued) RT-ESTDL Description for Static Modeling of the I/GNS System

CAVIEqpmt AvionicEqpmt::CEQUIPMENT {

 BOOL IsSUT; // Is the system under test
 var Eqpmt_ID; // Equipment identification
 CAVIIODATAVAR ioDataVar; // IO interface data
 CAVIIOLINK ioLink; // Bus connection type

 procedure InitEqpmt(ioData, ioLink);
 procedure StartEqpmt();
 …
 procedure SendDataValue (srcEqpmtID, srcVar,dstEqpmtID,
dstVar, iolink);
 //
Sending variable data
 procedure SendDataValue (varValue,dstEqpmtID, dstVar,
iolink);// Send value data
 procedure GetDataValue (rcvEqpmtID, rcvVar, iolink);
// Receiving data /
 …
}
/******** The following is the I/GNS model **************/
// IGNS.module
IGNSMDL :: AvionicEqpmt{
 IsSUT = TRUE; // is the system under test
 Eqpmt_ID = “IGNS”;
 ioLink.ioType = “MIL-STD-1553B”;
 var APP; // Power-on signal
 var WOW; // Wheeled signals
 1553BBLOCK A_ADIN_01_00;
 1553BBLOCK A_DCIN_00_00;
 1553BBLOCK A_DCIN_01_01;
 . . .
}
/******** Here is the SMS model **************/
// SMS .module
SMSMDL :: AvionicEqpmt
{
 IsSUT = FALSE;
 Eqpmt_ID = “SMS”;
 ioLink.ioType = “MIL-STD-1553B”;
 1553BBLOCK B_INSM_01_00;
 1553BBLOCK B_INSM_02_00;
 1553BBLOCK B_INSM_03_00;
 . . .
}
(The following is omitted)

Case Study of Real-Time Embedded Software System Testing    ◾    259

7.3.1 Dynamic Modeling Based on UML State Diagrams
7.3 I/GNS SYSTEM DYNAMIC MODELING

According to the requirement specification of the combined inertial/satel-
lite navigation system software, the I/GNS system software state migra-
tion diagram based on real-time extended UML can be completed (OCL
constraint descriptions are omitted due to space limitations; some UML
state diagram modeling examples can be found in the relevant sections of
Chapter 3 of this book), as shown in Figure 7.4.

According to Figure 7.4, the typical states of I/GNS system software
mainly include BIT self-detection state, process control state, attitude
state, calibration state, alignment state, and navigation state, where
alignment state, navigation state, maintenance state, and calibration state
are composite states (which can be further decomposed into sub-state
diagrams):

 1. After the BIT self-test is completed, you can choose to perform
receive data operation, or enter the process control, and then enter
other air corresponding state migration.

power-on

initialization

BIT

self-test

receive

data

process

control

ATT-
Init

maintenance state

ground

maintenance

air

maintenance

attitude
state

calibration

state

calibration

gyro

parameters

calibration

accelerometer

alignment state

RoW alignment

fast alignment

store heading
alignment

input heading
alignment

navigation state

NAV state
combined
navigation

pure

inertial

navigation

GPS
navigation

non-NAV state

backup
state

approach
state

end-of-
flight

FIGURE 7.4 I/GNS system software state migration.

260    ◾    Embedded Software System Testing

 2. After ATT-Init, the migration of the corresponding air state can
be completed according to the DCMP manifest control, such as
 entering the alignment state, or attitude state, or maintenance state,
while the maintenance state can be divided into two sub-states of
air ma intenance state and ground maintenance according to the
wheeled signal.

 3. The sub-states of the alignment state are the RoW alignment state
and the fast alignment state, and the RoW alignment state and the
fast alignment state are sequential.

 4. The sub-states of the calibration state are calibration gyro param-
eters, calibration accelerometer, and they are concurrently related.

 5. The sub-states of the navigation state are inertial/satellite combined
navigation, pure inertial navigation, GPS navigation, backup state,
approach state, and end-of-flight state. Among them, the NAV
state (including inertial/satellite combined navigation, pure inertial
navigation, and GPS navigation) and the non-NAV state (includ-
ing backup state, approach state, and end-of-flight state) are con-
current relationship, i.e. AND relationship, while the backup state,
approach state, and end-of-flight state in the non-NAV state are OR
relationship.

Based on the above state modeling, state migration analysis should also be
performed to facilitate subsequent test sequences and test case generation,
and some of the results of state migration condition analysis are given in
Tables 7.2 and 7.3.

7.3.2 R T-EFSM Model of I/GNS and Analysis of Time-
Constrained Migration Equivalence Classes

According to the method proposed in Chapter 4 for transforming a com-
posite UML state diagram into an RT-EFSM, Figure 7.4 can be transformed
into the RT-EFSM model shown without nested states (each state migra-
tion condition is omitted due to space limitations), as shown in Figure 7.5.

To better describe each state and its migration conditions, the book
re-labels each state as follows: S0 is the starting state, i.e. power-on initial-
ization state; S1 is the (BIT) self-detection state; S2 is the process control
state; S3 is the ATT-Init state; S4 is the normal compass alignment state;
S5 is the stored heading alignment; S6 is the input heading alignment; S7

Case Study of Real-Time Embedded Software System Testing    ◾    261

Status
Migration
Direction Migration Conditions

Navigation
Status(NAV)

S1

Transfer out End of navigation status, end-of-flight turn
from(NAV)to(GC), and WOW is not activated (up to S2)a

from(NAV)to(FAST), and WOW is not activated (up to S3)a

from(NAV)to(GC) or from(NAV)to(FAST), and WOW
has been activated (up to S1)a

Transfer in I/GNSAlready completed the normal compass
alignment state (from S2), automatic transfer, time <=
100 ms

I/GNSAlready finished fast alignment state (from S3),
automatic transfer, time <= 100 ms

Normal Loop
Alignment
(GC)

StatusS2

Transfer out I/GNSAlready completed normal compass alignment
state (auto to S1), time <= 100 ms

from(GC)to(FAST), Already completed normal compass
alignment state (auto to S1), time <= 100 ms

from(GC)to(CAL), and I/GNS for completion of GC
coarse alignment (to S4), time <= 100 ms

from(GC)to(ATT) (to S5), complete alignment,
automatic turn-out, time <= 100 msa

Transfer in from(NAV)to(GC), and WOW is not activated (from S1)a

from(CAL)to(GC) and coarse alignment is not
completed (or) CAL ends after coarse alignment is
completed and automatically goes to (from S4)

from(ATT)to(GC) (from S5), complete ATT-Init, receive
DCMP command, time <= 100 ms

Fast
Alignment
(FAST)

StatusS3

Transfer out

Transfer in

from(FAST)to(GC) (to S2), time <= 100 ms
from(FAST)to(CAL) (to S4), time <= 100 ms
from(FAST)to(ATT) (up to S5), WOW is not activateda

from(NAV)to(FAST), and WOW is not activated (from S1)a

from(GC)to(FAST), and I/GNS has not completed GC
coarse alignment (from S2)

from(CAL)to(FAST) and coarse alignment is not
completed (or) CAL ends after coarse alignment is
completed and automatically goes to (from S4)a

from(ATT)to(FAST) (from S5)
Calibration
Status(CAL)
S4

Transfer out from(CAL)to(GC) and coarse alignment is not
completed (or) CAL ends after coarse alignment is
completed and automatically goes to (to S2)a

from(CAL)to(FAST) and coarse alignment is not
completed (or) CAL ends after coarse alignment is
completed and automatically moves to (to S3)a

from(CAL)to(NAV), After I/GNS completes coarse
alignment, turn CAL ends and automatic turn-in (to
S5), time <=120 ms

TABLE 7.2 I/GNS Partial State Migration Condition Analysis

(Continued)

262    ◾    Embedded Software System Testing

TABLE 7.2 (Continued)  I/GNS Partial State Migration Condition Analysis

Status
Migration
Direction Migration Conditions

Transfer in from(NAV)to(CAL) (from S1), WOW is not activateda

from(GC)to(CAL), and I/GNS has not completed GC
coarse alignment (from S2), time <= 120 ms

from(FAST)to(CAL) (from S3), time <= 120 ms
from(ATT)to(CAL), and I/GNS=ATT-INIT (from S5),
WOW is not activateda

Posture
Status(ATT)
S5

Transfer out from(ATT)to(GC) (to S2), WOW is not activateda

from(ATT)to(FAST) (up to S3), WOW is not activateda

from(ATT)to(CAL), and I/GNS completes ATT-INIT (to
S4), WOW is not activateda

Transfer in (Usual cause of failure) turn attitude state, followed by
DCMP command, turn end of flight, time <=120 ms

from(NAV)to(ATT) (from S1), WOW is not activateda

from(GC)to(ATT) (from S2), WOW is not activateda

from(FAST)to(ATT) (from S3), WOW is not activateda

from(CAL)to(ATT) and coarse alignment is not
completed (or) CAL ends after coarse alignment is
completed, automatic transfer (from S4), WOW is not
activateda

a This state conversion is a ground debugging process (because WOW has been activated)
and is not handled in this book.

TABLE 7.3 I/GNS Partial Sub-state Migration Condition Analysis

Top State Sub-state Migration Direction Migration Conditions

Navigation
status S1

Combined
Navigation
S11

Transfer out Missing or invalid satellite data (up to
S12)

Inertial guidance gyro failure (to S13)
Transfer in Satellite data back to normal (from S12)

Inertial guidance returns to normal
(from S13)

Pure
inertial
navigation
S12

Transfer out Satellite data back to normal (to S11)
Inertial guidance gyro failure (to S13)

Transfer in Missing or invalid satellite data (from
S11)

Inertial gyro back to normal (from S13)
GPS
Navigation
S13

Transfer out Satellite data back to normal (to S12)
Inertial gyro back to normal (to S11)

Transfer in Inertial gyro failure (from S11)
Inertial gyro failure (from S12)

Case Study of Real-Time Embedded Software System Testing    ◾    263

FIGURE 7.5 RT-EFSM model for I/GNS system software.

is the calibrated gyro parameters; S8 is the calibrated accelerometer; S9 is
the combined navigation state; S10 is the GPS navigation; S11 is the pure
inertial navigation; S12 is the backup state; S13 is the approach state; S14 is
the end-of-flight state; S15 is the attitude state; S16 is the air maintenance;
S17 is the ground maintenance; S18 is the received data; and S19 is the ter-
mination state.

Based on the above analysis, the analysis of each state migration con-
dition can be completed by combining the software requirement docu-
ment and ICD file, i.e., the list of time-constrained migration equivalence
classes, as shown in Table 7.4 (only the main time-constrained migration
equivalence classes are listed here due to the limitation of space), which
lays the foundation for the generation of subsequent test sequences, test
cases, and test descriptions.

7.4 TEST SEQUENCE, TEST CASE AND TEST
DESCRIPTION GENERATION

After constructing the time-constrained migration equivalence classes
listed in Table 7.4, the test scenario tree can be constructed according
to the method in Chapter 3 of this book (see Appendix 4), and only a
few typical state migration test scenario trees are analyzed and test
sequence generation work is completed in this part due to the limita-
tion of space.

264    ◾    Embedded Software System Testing

TA
B

LE
 7

.4

Li
st

 o
f E

qu
iv

al
en

ce
 C

la
ss

es
 fo

r T
im

e-
Bo

un
de

d
M

ig
ra

tio
n

of
 I/

G
N

S
(p

ar
tia

l)

Bi
nd

in
gC

In
pu

t I
nf

or
m

at
io

n
(?

I)
O

ut
pu

t I
nf

or
m

at
io

n
(!

O
)

So
ur

ce
 S

ta
tu

s
O

bj
ec

tiv
es

 S
ta

tu
s

Va
ri

ab
le

Ti

m
e

C
on

st
ra

in
ts

C
on

st
ra

in
ts

In
pu

t V
ar

ia
bl

es
In

pu
t A

ct
io

n
O

ut
pu

t
O

ut
pu

t A
ct

io
n

Va
ri

ab
le

s
S 0

S 1
IG

N
S.

gt
<

=
5

m
s

IG
N

S.
A

PP
N

O
N

E
D

CM
P.

Se

nd
D

at
aV

al
ue

W

O
W

=
=

1
IN

D
C_

00
_0

0
(I

G
N

S,

D
C

IN
_0

0_
00

,
D

C
M

P,

IN
D

C
_0

0_
00

,
15

53
B)

S 1
S 2

IG
N

S.
W

O
W

=
=

1;
IN

D
T_

01
_0

0.
gt

<
=

40
 m

s;
IN

_0
52

>
=

8.
0

lt<
=

20
 m

s
IG

N
S.

D
CI

N
_0

1_
00

G
et

D
at

aV
al

ue

(D
TE

,
IN

D
T_

01
_0

0,

15
53

B)
;

Se
nd

D
at

aV
al

ue

D
CM

P.
 IN

D
C_

01
_0

0
Se

nd
D

at
aV

al
ue

(0

x4
31

0,
 IG

N
S,

(I

G
N

S,

D
CI

N
_0

1_
00

)
D

CI
N

_0
1_

00
,

D
CM

P,

IN
D

C_
01

_0
0,

15

53
B)

S 1
S 1

8
IG

N
S.

W
O

W
=

=
1;

(C
on

tin
ue

d)

Case Study of Real-Time Embedded Software System Testing    ◾    265

TA
B

LE
 7

.4
 (C

on
tin

ue
d)

 
Li

st
 o

f E
qu

iv
al

en
ce

 C
la

ss
es

 fo
r T

im
e-

Bo
un

de
d

M
ig

ra
tio

n
of

 I/
G

N
S

(p
ar

tia
l)

Bi
nd

in
gC

In
pu

t I
nf

or
m

at
io

n
(?

I)
O

ut
pu

t I
nf

or
m

at
io

n
(!

O
)

So
ur

ce
 S

ta
tu

s
O

bj
ec

tiv
es

 S
ta

tu
s

Va
ri

ab
le

Ti

m
e

C
on

st
ra

in
ts

C
on

st
ra

in
ts

In
pu

t V
ar

ia
bl

es
In

pu
t A

ct
io

n
O

ut
pu

t
O

ut
pu

t A
ct

io
n

Va
ri

ab
le

s
D

CM
P.

IN
D

C_
00

_0
0.

gt
>

40
 m

s
IG

N
S.

Se
nd

D
at

aV
al

ue

IG
N

S.

N
O

N
E

VA
LI

D
=

=
1

D
TI

N
_0

1_
00

(0
x3

31
0,

D

TI
N

_0
1_

00
.

IG
N

S,

VA
LI

D
=1

D
TI

N
_0

1_
00

)
S 2

S 3
IG

N
S.

W
O

W
=

=
0;

D
CM

P.
IN

D
C_

00
_0

0.
gt

>
40

 m
s

IG
N

S.
Se

nd
D

at
aV

al
ue

D

CM
P.

Se

nd
D

at
aV

al
ue

VA

LI
D

=
=

1
D

CI
N

_0
1_

00
(0

x4
01

0,

IN
D

C_
01

_0
0

(I
G

N
S,

IG

N
S,

D

CI
N

_0
1_

00
,

D
CI

N
_0

1_
00

)
D

CM
P,

IN

D
C_

01
_0

0,

15
53

B)
S 3

S 4
IG

N
S.

W
O

W
=

=
0;

IN
D

T_
01

_0
0.

gt
>

70
 m

s
IG

N
S.

G
et

D
at

aV
al

ue

IN
_0

52
>

=
7.

0
D

CI
N

_0
0_

00
(D

TE
,

IN
D

T_
01

_0
0,

15

53
B)

;
Se

nd
D

at
aV

al
ue

D

TE
.IN

D
T_

01
_0

0.
(0

x2
1D

0,
 IG

N
S,

IN

_0
52

==
7.

0;
D

CI
N

_0
0_

00
)

D
CM

P.
 IN

D
C_

00
_0

0;
(C

on
tin

ue
d)

266    ◾    Embedded Software System Testing

TA
B

LE
 7

.4
 (C

on
tin

ue
d)

 
Li

st
 o

f E
qu

iv
al

en
ce

 C
la

ss
es

 fo
r T

im
e-

Bo
un

de
d

M
ig

ra
tio

n
of

 I/
G

N
S

(p
ar

tia
l)

Bi
nd

in
gC

In
pu

t I
nf

or
m

at
io

n
(?

I)
O

ut
pu

t I
nf

or
m

at
io

n
(!

O
)

So
ur

ce
 S

ta
tu

s
O

bj
ec

tiv
es

 S
ta

tu
s

Va
ri

ab
le

Ti

m
e

C
on

st
ra

in
ts

C
on

st
ra

in
ts

In
pu

t V
ar

ia
bl

es
In

pu
t A

ct
io

n
O

ut
pu

t
O

ut
pu

t A
ct

io
n

Va
ri

ab
le

s
CA

D
C_

IN
A

D
_0

0_
00

Se
nd

D
at

aV
al

ue

(I
G

N
S,

 D
CI

N
_0

0_
00

,
D

CM
P,

IN

D
C_

00
_0

0,

15
53

B)
Se

nd
D

at
aV

al
ue

 (I
G

N
S,

A

D
IN

_0
0_

00
, C

A
D

C,

IN
A

D
_0

0_
00

, D
I)

S 3
S 1

5
IG

N
S.

gt
>

70
 m

s
IG

N
S.

Se
nd

D
at

aV
al

ue

D
CM

P.

Se
nd

D
at

aV
al

ue

W
O

W
=

=
0;

D
CI

N
_0

0_
00

(0
x2

3D
0,

IN

D
C_

19
_0

0
(I

G
N

S,

IG
N

S,

=
0x

35
00

D
CI

N
_0

0_
00

,
D

CI
N

_0
0_

00
)

D
CM

P,

IN
D

C_
09

_0
0,

15

53
B)

S 3
S 1

7
IG

N
S.

gt
>

25
 m

s
IG

N
S.

Se
nd

D
at

aV
al

ue

D
CM

P.

Se
nd

D
at

aV
al

ue

W
O

W
=

=
1;

D
CI

N
_0

0_
00

(0
x6

12
2,

IN

D
C_

00
_0

0
(I

G
N

S,

IG
N

S,

D
CI

N
_0

0_
00

,
D

CI
N

_0
0_

00
)

D
CM

P,

IN
D

C_
00

_0
0,

15

53
B)

S 4
S 5

IG
N

S.
W

O
W

=
=

0;
IN

D
T_

01
_0

0.
gt

>
15

0
m

s;
IN

_0
52

<
=

7.
0

(C
on

tin
ue

d)

Case Study of Real-Time Embedded Software System Testing    ◾    267
TA

B
LE

 7
.4

 (C
on

tin
ue

d)
 

Li
st

 o
f E

qu
iv

al
en

ce
 C

la
ss

es
 fo

r T
im

e-
Bo

un
de

d
M

ig
ra

tio
n

of
 I/

G
N

S
(p

ar
tia

l)

Bi
nd

in
gC

In
pu

t I
nf

or
m

at
io

n
(?

I)
O

ut
pu

t I
nf

or
m

at
io

n
(!

O
)

So
ur

ce
 S

ta
tu

s
O

bj
ec

tiv
es

 S
ta

tu
s

Va
ri

ab
le

Ti

m
e

C
on

st
ra

in
ts

C
on

st
ra

in
ts

In
pu

t V
ar

ia
bl

es
In

pu
t A

ct
io

n
O

ut
pu

t
O

ut
pu

t A
ct

io
n

Va
ri

ab
le

s
lt<

=
10

0
m

s
IG

N
S.

D
CI

N
_0

0_
00

IG
N

S.
D

CI
N

_0
1_

04
G

et
D

at
aV

al
ue

(D
TE

,
IN

D
T_

01
_0

0,
15

53
B)

;
Se

nd
D

at
aV

al
ue

D

TE
.IN

D
T_

01
_0

0.
(0

x2
5D

0,
 IG

N
S,

IN

_0
52

==
6.

0;
D

CI
N

_0
0_

00
);

D
CM

P.
 IN

D
C_

00
_0

0;
Se

nd
D

at
aV

al
ue

(I

G
N

S,
 D

CI
N

_0
0_

00
,

D
CM

P,

IN
D

C_
00

_0
0,

15
53

B)
S 4

S 6
IG

N
S.

W
O

W
=

=
0;

IN
D

T_
01

_0
0.

gt
>

15
0

m
s;

IN
_0

52
<

=
7.

0
lt<

=
10

0
m

s
IG

N
S.

D
CI

N
_0

0_
00

G
et

D
at

aV
al

ue

(D
TE

,
IN

D
T_

01
_0

0,

15
53

B)
;

Se
nd

D
at

aV
al

ue

D
TE

.IN
D

T_
01

_0
0.

(0
x2

5D
0,

 IG
N

S,

IN
_0

52
=

=
6.

0;
D

CI
N

_0
0_

00
);

IG
N

S.
 IN

LP
_0

1_
00

Se
nd

D
at

aV
al

ue
 (I

G
N

S,

D
CI

N
_0

0_
00

, D
CM

P,

IN
D

C_
00

_0
0,

15

53
B)

;
(C

on
tin

ue
d)

268    ◾    Embedded Software System Testing

TA
B

LE
 7

.4
 (C

on
tin

ue
d)

 
Li

st
 o

f E
qu

iv
al

en
ce

 C
la

ss
es

 fo
r T

im
e-

Bo
un

de
d

M
ig

ra
tio

n
of

 I/
G

N
S

(p
ar

tia
l)

Bi
nd

in
gC

In
pu

t I
nf

or
m

at
io

n
(?

I)
O

ut
pu

t I
nf

or
m

at
io

n
(!

O
)

So
ur

ce
 S

ta
tu

s
O

bj
ec

tiv
es

 S
ta

tu
s

Va
ri

ab
le

Ti

m
e

C
on

st
ra

in
ts

C
on

st
ra

in
ts

In
pu

t V
ar

ia
bl

es
In

pu
t A

ct
io

n
O

ut
pu

t
O

ut
pu

t A
ct

io
n

Va
ri

ab
le

s
Se

nd
D

at
aV

al
ue

 (I
G

N
S,

D

CI
N

_0
0_

00
, D

CM
P,

IN

D
C_

00
_0

0,
 1

55
3B

);
S 1

0
S 9

IG
N

S.
W

O
W

=
=

0;
IN

D
T_

01
_0

0.
gt

>
15

0
m

s;
IN

_0
52

<
=

4.
0

lt<
=

10
0

m
s

IG
N

S.
D

CI
N

_0
0_

00
G

et
D

at
aV

al
ue

(D

TE
,

IN
D

T_
01

_0
0,

15

53
B)

;
Se

nd
D

at
aV

al
ue

(0
x2

30
5,

D

CM
P.

 IN
D

C_
00

_0
0;

IG
N

S,
 D

CI
N

_0
0_

00
);

IG
N

S.
 IN

LP
_0

1_
00

Se
nd

D
at

aV
al

ue

(I
G

N
S,

 D
CI

N
_0

0_
00

,
D

CM
P,

IN

D
C_

00
_0

0,

15
53

B)
;

S 1
4

S 1
9

N
O

N
E

N
O

N
E

IG
N

S.
Se

nd
D

at
aV

al
ue

D

TE
.

Se
nd

D
at

aV
al

ue

D
CI

N
_0

0_
00

(0
x9

91
0,

IN

D
T_

03
_0

0
(I

G
N

S,

IG
N

S,

D
TI

N
_0

3_
00

,
D

CI
N

_0
0_

00
);

D
TE

,
IN

D
T_

03
_0

0,

15
53

B)

Case Study of Real-Time Embedded Software System Testing    ◾    269

Examples of selected typical (after spreading) test scene trees are as
follows:

TST01: s0 1→ →s s18 → s19

TST02: s0 1→ →s s2 3→ →s s17 → s19

TST03: s0 1→ →s s2 3 4 5 7→ →s s → →s s → →s s9 11 1→ s 9

TST04: s0 1→ →s s2 3 4 5 7→ →s s → →s s → →s s9 10 9→ →s s11 → s19

From the test sequence generation method, each state migration in
RT-EFSM corresponds to a number of time-constrained migration
equivalence classes. We can use extended test sequences USex to rep-
resent the set of, Definition of by USex, Then the corresponding test
sequences can be generated based on the above test scenario tree as
follows:

 USex 01:

{ _()S S0 1→ < t ,Cnd v0 1→ →Cnd i0 1 > <_? vVle0 1→ →,iAct0 1 >

_! < >ovVle o0 1→ →, }Act 0 1 ∪

{ _()S S1 1→ <8 1t ,Cnd v→ →18 Cnd i1 18 1> <_? vVle → →18 ,iAct1 18 >

_! < >ovVle o1 1→ →8 1, }Act 18 ∪

{ _()S S18 → <19 t ,Cnd v18→ →19 Cnd i18 19 > <_? vVle18→ →19 ,iAct18 19 >

_! < >ovVle o18→ →19 , }Act 18 19

 USex 02:

{ _()S S0 1→ < t ,Cnd v0 1→ →Cnd i0 1 > <_? vVle0 1→ →,iAct0 1 >

_! < >ovVle o0 1→ →, }Act 0 1 ∪

270    ◾    Embedded Software System Testing

{ _()S S3 1→ <7 3t ,Cnd v→ →17 Cnd i3 17 3> <_? vVle → →17 ,iAct3 17 >

_! < >ovVle o3 1→ →7 3, }Act 17 ∪

{ _()S S17 → <19 t ,Cnd v17→ →19 Cnd i17 19 > <_? vVle17→ →19 ,iAct17 19 >

 _! < >ovVle o17→ →19 , }Act 18 19

 USex 03:

{ _()S S0 1→ < t ,Cnd v0 1→ →Cnd i0 1 > <_? vVle0 1→ →,iAct0 1 >

_! < >ovVle o0 1→ →, }Act 0 1 ∪

{ _()S S1 2→ < t ,Cnd v1 2→ →Cnd i1 2 > <_? vVle1 2→ →,iAct1 2 >

_! < >ovVle o1 2→ →, }Act 1 2 ∪

{ _()S S2 3→ < t ,Cnd v2 3→ →Cnd i2 3 > <_? vVle2 3→ →,iAct2 3 >

_! < >ovVle o2 3→ →, }Act 2 3 ∪

{ _()S S3 4→ < t ,Cnd v3 4→ →Cnd i3 4 > <_? vVle3 4→ →,iAct3 4 >

_! < >ovVle o3 4→ →, }Act 3 4 ∪

{ _()S S4 5→ < t ,Cnd v4 5→ →Cnd i4 5 > <_? vVle4 5→ →,iAct4 5 >

_! < >ovVle o4 5→ →, }Act 4 5 ∪

{ _()S S5 7→ < t ,Cnd v5 7→ →Cnd i5 7 > <_? vVle5 7→ →,iAct5 7 >

_! < >ovVle o5 7→ →, }Act 5 7 ∪

{ _()S S7 9→ < t ,Cnd v7 9→ →Cnd i7 9 > <_? vVle7 9→ →,iAct7 9 >

 _! < >ovVle o7 9→ →, }Act 7 9 ∪

Case Study of Real-Time Embedded Software System Testing    ◾    271

{ _()S S9 1→ <1 9t ,Cnd v→ →11 Cnd i9 11 9> <_? vVle → →11 ,iAct9 11 >

_! < >ovVle o9 1→ →1 9, }Act 11 ∪

{ _()S S11 → <19 t ,Cnd v11→ →19 Cnd i11 19 > <_? vVle11→ →19 ,iAct11 19 >

 _! < >ovVle o11→ →19 , }Act 11 19

	 USex 04:

{ _()S S0 1→ < t ,Cnd v0 1→ →Cnd i0 1 > <_? vVle0 1→ →,iAct0 1 >

_! < >ovVle o0 1→ →, }Act 0 1 ∪

{ _()S S1 2→ < t ,Cnd v1 2→ →Cnd i1 2 > <_? vVle1 2→ →,iAct1 2 >

_! < >ovVle o1 2→ →, }Act 1 2 ∪

{ _()S S2 3→ < t ,Cnd v2 3→ →Cnd i2 3 > <_? vVle2 3→ →,iAct2 3 >

_! < >ovVle o2 3→ →, }Act 2 3 ∪

{ _()S S3 4→ < t ,Cnd v3 4→ →Cnd i3 4 > <_? vVle3 4→ →,iAct3 4 >

_! < >ovVle o3 4→ →, }Act 3 4 ∪

{ _()S S4 5→ < t ,Cnd v4 5→ →Cnd i4 5 > <_? vVle4 5→ →,iAct4 5 >

_! < >ovVle o4 5→ →, }Act 4 5 ∪

{ _()S S5 7→ < t ,Cnd v5 7→ →Cnd i5 7 > <_? vVle5 7→ →,iAct5 7 >

_! < >ovVle o5 7→ →, }Act 5 7 ∪

{ _()S S7 9→ < t ,Cnd v7 9→ →Cnd i7 9 > <_? vVle7 9→ →,iAct7 9 >

_! < >ovVle o7 9→ →, }Act 7 9 ∪

{ _()S S9 1→ <0 9t ,Cnd v→ →10 Cnd i9 10 9> <_? vVle → →10 ,iAct9 10 >

 _! < >ovVle o9 1→ →0 9, }Act 10 ∪

272    ◾    Embedded Software System Testing

{ _()S S10 → <9 1t ,Cnd v0 9→ →Cnd i10 9 1> <_? vVle 0 9→ →,iAct10 9 >

_! < >ovVle o10→ →9 1, }Act 0 9 ∪

{ _()S S9 1→ <1 9t ,Cnd v→ →11 Cnd i9 11 9> <_? vVle → →11 ,iAct9 11 >

_! < >ovVle o9 1→ →1 9, }Act 11 ∪

{ _()S S11 → <19 t ,Cnd v11→ →19 Cnd i11 19 > <_? vVle11→ →19 ,iAct11 19 >

 _! < >ovVle o11→ →19 , }Act 11 19

On the basis of generating test sequences, test cases based on state, migra-
tion coverage criterion, full predicate coverage criterion, transformation
pair coverage criterion, and time condition coverage criterion can be gen-
erated according to the test case generation methods given in Chapter 4.
In addition, according to different methods of black-box testing, test types
such as normal function test cases, exception test cases, boundary test
cases, performance test cases, interface test cases, resilience test cases, and
strength test cases can also be generated (see Chapter 3 of this book for
details of the methods). Due to the limitation of space, only two test cases
corresponding to the above test sequences are given in this book, as follows:

TestCase01:

{ _()S S0 1→ < (.IGN WOW == 1)& &(5gt <=) _> <? .IGNS APP = >1

_! < SendDataValue I(,GNS DCIN D_00_00, ,CMP INDC B_00_00,1553 }∪>

{ _()S S1 1→ <8 (.IGNS WOW D== 1)& &(.CMP INDC V_00_00. ALID == 1)

& &(4gt >= 0) >

_? < IGNS. _DTIN 01_00,SendDataValue x(0 3310, ,IGNS DTIN _01_00)

_! < =(.IGNS DTIN _01_00.VALID N1),(ONE) }> ∪

>

{ _()S S18 → <19 []NONE _? IGNS. _DCIN 00_00),

SendDataValue x(0 9910, ,IGNS DCIN _00_00) >

_! < (.DTE INDT S_03_00),((endDataValue IGNS, _DTIN 03_00,

DTE I, _NDT B03_00,1553)) >}

Case Study of Real-Time Embedded Software System Testing    ◾    273

TestCase02:

{ _()S S0 1→ < (.IGN WOW == 1)& &(5gt <=) _> <? .IGNS APP = >1

_! < SendDataValue I(,GNS DCIN D_00_00, ,CMP INDC B_00_00,1553 }∪>

{ _()S S1 2→ < (.IGNS WOW I== 1)& &(_NDT I01_00. N _052 >= 8.0),

(gt 4<= 0)ms & &(2lt <= 0)ms >

_? < IGNS. _DCIN 01_00,((GetDataValue DTE I, _NDT 01_00,1553);B

SendDataValue x(0 4310, ,IGNS DCIN _01_00)) >

_! < DCMP. _INDC 01_00,SendDataValue I(,GNS DCIN _01_00,

DCMP, _INDC 01_00,1553B) }> ∪

{ _()S S3 1→ <7 IGNS. _DCIN 00_00,

SendDataValue x(0 6122, ,IGNS DCIN _00_00) >

_! < DCMP. _INDC 00_00,SendDataValue I(,GNS

DCIN _00_00, ,DCMP INDC _00_00,1553B > ∪}

{ _()S S17 → <19 NONE > <_? IGNS. _DCIN 00_00,

SendDataValue x(0 9010, ,IGNS DCIN _00_00) >

_! < DTE I. _NDT S03_00, endDataValue(,IGNS DTIN _03_00, ,DTE

INDT _03_00,1553B) }>

After the test cases based on the test scenario tree are generated, the gen-
erated test cases can be stored in XML files according to the method in
Chapter 3 of this book, and then the contents of the XML files can be
parsed and converted into corresponding test descriptions according to
the grammar rules of RT-ESTDL, which gives the RT-ESTDL file contents
of typical test cases (Table 7.5).

274    ◾    Embedded Software System Testing

TABLE 7.5 RT-ESTDL Description of Typical Test Cases for I/GNS

#include “testConfig.tdf”
using “RT-ESTDL.mdl”
using “aviiodatavar.mdl”
using “aviiolink.mdl”
using “1553bBlock.mdl”
using “igns.mdl”
using “sms.mdl”
using “dcmp.mdl”
…
procedure IGNSTestCase03 ()

{

 var gt; // Used to record the global clock
 var lt; // For recording local clocks
 // Device Generation
 IGNSMDL IGNS;
 DCMPMDL DCMP;
 …

 //S0->S1, Enter BIT self-test
 IGNS.APP =1; //IGNS Add electricity
 gt= GetCurTestTime();
 if((IGNS.WOW==1)&&(gt<=5)) // Time constraint of 5 ms
and a wheel load signal of 1 (on the ground)
 SendDataValue(IGNS,DCIN_00_00,DCMP,INDC_00_00,1553B);
// Perform BIT self-test
 GetDataValue(DTE, INDT_01_00,1553B); // Obtain DTE
navigation accuracy data
 //S1->S2, Enter process control, aircraft take off
 if(INDT_01_00.IN_052>=8.0){
 IGNS.DCIN_01_00=0x2010;
 SendDataValue(0x4310,IGNS,DCIN_01_00); // Enter
process control, aircraft take off
 lt= GetCurTestTime()-gt; // Calculating the local
clock for state migration
 if(lt<=20)
 print(“\r\n---≫>IGNS enter process control!---≪\
r\n”); // Screen Printing
 }
 else
 print(“\r\n---≫>NAV accuracy failure!---≪\r\n”); //
Navigation accuracy not met
 //S2->S3, Enter ATT-Init
 while(gt>40){ // Get the system clock until it meets 40
ms

(Continued)

Case Study of Real-Time Embedded Software System Testing    ◾    275

TABLE 7.5 (Continued)  RT-ESTDL Description of Typical Test Cases for I/GNS

 gt= GetCurTestTime();
 if (IGNS.WOW==0)&&DCMP.INDC_00_00.VALID==1)){ // The
aircraft is in the air and the attitude dispersion signal is
valid
 IGNS.DCIN_01_00= 0x4010; // Sending display control
commands
 break;
 }
 wait(20);
 SendDataValue(IGNS,DCIN_01_00,DCMP,INDC_01_00,1553B);
//60 ms ATT-InitDone, refresh the display control
 // Normal Roentgen alignment
 while(gt>70){ // Get the system clock, until it meets 70
ms, ATT-Init and display control refresh is completed.
 gt= GetCurTestTime();
 GetDataValue(DTE, INDT_01_00,1553B); // Get navigation
accuracy
 if(INDT_01_00.IN_052>=8.0){
 IGNS.DCIN_00_00=0x21D0; // Sending of the rosette
alignment command
 DTE.INDT_01_00.IN_052==7.0; // Set navigation accuracy
 SendDataValue(IGNS,DCIN_00_00,DCMP,INDC_00_00,1553B);
// Display Control Refresh
 SendDataValue(IGNS,ADIN_00_00,CADC,INAD_00_00,DI); //
Set the atmospheric data computer heading parameters valid
 }
 break;
 // Perform input heading alignment
 while(gt>150){ // Get the system clock until it meets
150 ms
 gt= GetCurTestTime();
 GetDataValue(DTE, INDT_01_00,1553B); // Get navigation
accuracy
 if(INDT_01_00.IN_052<=7.0){
 IGNS.DCIN_00_00=0x25D0; // Send input heading
alignment command
 DTE.INDT_01_00.IN_052==6.0;
 SendDataValue(IGNS,DCIN_00_00,DCMP,INDC_00_00,1553B);
 SendDataValue(DET,INDT_01_00,IGNS,DIIN_00_00,1553B);
// Display heading value
 }
 break;
 }
...

(Continued)

276    ◾    Embedded Software System Testing

TABLE 7.5 (Continued)  RT-ESTDL Description of Typical Test Cases for I/GNS

// Portfolio Navigation
 IGNS.DCIN_01_00=0x2305; // Enter Portfolio Navigation
 GetDataValue(DCMP, INDC_01_00,1553B);
...
// Enter end-of-flight status
 while((IGNS.DTIN_00_00.STATUS_IN &&0x0800 != 1)){
 DTE.INDT_03_00=0x8120; // Enter EOF operating mode
 print(“\r\n---≫>IGNS enter EOF mode!---≪\r\n”);
 return;// End of flight
 }
}

0

20

40

60

80

100

120

140

160

number
of

test cases

normal abnormal data processingstrengthrecoverabilitysecurityinterfaceboundaryperformance

FIGURE 7.6 I/GNS system software test case statistics.

7.5 TEST EXECUTION AND RESULT ANALYSIS
Based on the above analysis, this instance verification tested all func-
tions and performance of the I/GNS system in terms of normal functions,
exceptions, performance, boundaries, interfaces, strength, security, recov-
erability, and data processing, and generated a total of 412 test cases (test
descriptions) (see Figure 7.6 for the distribution of cases).

Based on the test cases (test descriptions), the generated test descrip-
tions were imposed on the RT-ESSTE test environment, and the system
anomalies during the test were recorded through the real-time operation

Case Study of Real-Time Embedded Software System Testing    ◾    277

of the test execution system, and a total of 46 software defects were iden-
tified after analysis, including various defects such as missing functions,
functional implementation errors, timing errors, and logic errors. Finally,
combined with the analysis of software defects (see Table 7.6), the I/GNS
software system testing report was formed.

TABLE 7.6 I/GNS Typical Software Defect Analysis

Potential Impact
No. Software Defect Description Related Status Analysis

1 Attitude state, I/GNS sub-mode Attitude state Timing error, if other
ATT early report 10 seconds instructions are

triggered within 10
seconds of the early
reporting time, it
may lead to system
timing disorder and
affect flight safety.

2 The migration time is <=100 ms Normal compass Timing errors, which
for the normal ro-ro alignment alignment status; may lead to system
state to the stored heading stored heading timing disruptions
alignment state, and the actual alignment status and affect flight
migration time is 120 ms safety

3 In the combined navigation state, Combined System function
when the constant pressure navigation status; implementation
source failure occurs, the system GPS navigation error, may affect the
turns to GPS navigation, and the status pilot’s judgment,
heading and heading are set as make wrong
valid (the correct treatment instructions, affect
should set the heading and flight safety
heading as invalid)

4 During normal compass Normal warp Missing features that
alignment, the navigation alignment status may cause the
accuracy does not show 8.0 and alignment process to
no related processing is fail
performed

5 When the normal compass Normal compass Errors in the logic of
alignment is not completed, the alignment status; the decision maker
system will automatically switch Navigation status may lead to
to the navigation state after confusion in the
receiving the command to switch migration of the
to navigation several times system state and

enter into an
unknown processing
process, affecting
flight safety

(Continued)

278    ◾    Embedded Software System Testing

TABLE 7.6 (Continued)  I/GNS Typical Software Defect Analysis

Potential Impact
No. Software Defect Description Related Status Analysis

6 There is a logical error in the error Receiving data Wrong logic
correction processing of the status judgment, resulting
received data in the received data in receiving the
state wrong data, unable

to complete the
subsequent process

7 During the normal ground Normal warp Lack of protection
compass alignment, the binding alignment status against abnormal
altitude is +32,778 m, and the data, resulting in
system returns the binding result alignment process
as −32,768 m failure

8 Negative heading cannot be Enter heading Missing function,
entered in the input heading alignment status causing the input
alignment state heading alignment

process to fail
9 Ground maintenance state, pitch, Ground Lack of protection

roll, and other values exceed the maintenance against abnormal
rated range, but still receive the status data, leading to
binding ground maintenance

failures
10 BIT self-test state, the software BIT Self-Detection The lack of

does not alarm the shell under- Status functionality leads to
temperature fault hidden problems in

BIT self-detection,
affecting flight safety

11 If the ground maintenance status is Ground Wrong logic
not completed, the system maintenance judgment, resulting
responds to a new status status in confusing system
transition command (e.g., to state migration and
ATT) unknown processing

flow
12 The system can accept a binding Normal warp The system lacks

height of −470 m during normal alignment status security protection
ground-based compass alignment for abnormal binding

data, which affects
flight safety

Case Study of Real-Time Embedded Software System Testing    ◾    279

7.6 SUMMARY
In this chapter, the techniques and methods proposed in the previous
chapters of this book are systematically applied in the process of testing
the software system of a typical real-time embedded software – inertial/
satellite combined navigation system, including: completing the func-
tional and performance analysis of the system under test; completing the
static and dynamic modeling using real-time extended UML; completing
the design of time-constrained migration equivalence classes; generat-
ing test sequences, test cases and test descriptions; applying the obtained
test cases to the system testing environment; and finally finding vari-
ous software defects including timing errors, functional implementation
errors and logic errors through test runs. Finally, the obtained test cases
are imposed on the system testing environment; through test runs, vari-
ous software defects including timing errors, functional implementation
errors, and logic errors are found. Through engineering examples, the cor-
rectness and effectiveness of the techniques and methods proposed in this
book are fully verified.

https://taylorandfrancis.com

281

Appendix 1
Mathematical Symbol Index

SCHEDULE 1 Mathematical Symbol Index

Mathematical Symbol Illustration

S* Set of non-empty finite states in RT-EFSM model
S0 Initial state of RT-EFSM model
I RT-EFSM model input event set
O RT-EFSM model output event set
T Set of non-empty state transitions in RT-EFSM model
V RT-EFSM model input variable set
E Set of connected directed edges in RT-EFSM model
L Global clock of RT-EFSM model
Head(t) The starting state of migration t
I(t) The input event contained in the input event set I in

migration t
C(t) Preconditions for migration t execution
act Operations during state migration
O(t) Output events contained in output event set O
Tail(t) The arrival state of migration t
tS The state migration time is a fixed value
tF The state transition time obeys a certain distribution

function
tI The state transition time is a certain time interval
entry State entry, prior to any internal actions and

migrations
exit State exit, after all internal actions and migrations
iact State internal action

(Continued)

282    ◾    Appendix 1

SCHEDULE 1 (Continued)  Mathematical Symbol Index

Mathematical Symbol Illustration

itran State internal migration
iTevt A collection of time-related events within a state
lt State internal local clock

ρ θ()− = , , ,RT SD tp gt Real-time extended UML state diagram

ρ ∗ ∗
: 2S S State refinement function of real-time extended UML

state diagram

{ }∗: smp,AND,OR,psdotp S State-type function of real-time extension UML state
diagram

=() smptp s The state of the real-time extended UML state s
diagram is a simple state, and ρ() ≠ ∅s

=() ANDtp s The state of real-time extended UML state diagram is
AND state

=() ORtp s The state of real-time extended UML state diagram is
OR state

=() psdotp s The state of real-time extended UML state diagram is
pseudo state

θ ∗ ∗
: 2S S State default function of real-time extended UML state

diagram
gt Global clock of real-time extended UML state diagram
root The root node state of real-time extend UML state

diagram


∗src :T S Source state of state migration in real-time extended
UML state diagram

evt : evtT Trigger events of state migration in real-time extended
UML state diagram

grd : grdT Monitoring conditions of state migration in real-time
extended UML state diagram

act : actT Actions of state migration in real-time extended UML
state diagram



∗trgt :T S Target of state migration in real-time extended UML
state diagram



∗ ∗π : S S Father state of special state in real-time extended
UML state diagram

 →1
evt[grp]/act

2S S State migration of real-time extended UML state
diagram



∗

conf : 22S
S State pattern function of real-time extended UML

state diagram


∗actv : {TRUE,FALSE}S State active function of real-time extended UML state
diagram

enb : CT {TRUE,FALSE} State enable function of real-time extended UML state
diagram

(Continued)

Appendix 1    ◾    283

SCHEDULE 1 (Continued)  Mathematical Symbol Index

Mathematical Symbol Illustration

()conflict , ,t t ci j
State conflict function of real-time extended UML
state diagram

()prior ,t ti j
State migration priority of real-time extended UML
state diagram

↔t ti j State connection of real-time extended UML state
diagram

= ⊗t t ti j State decomposition of real-time extended UML state
diagram

{ }, , ,1 2C C Ck Time region division of time constraint ω on system
time

{ }()→ _[]_? _!src trgtS S C I O Time-constrained migration equivalence class

srcS Source state of time-constrained migration
equivalence class

trgrtS Target state of time-constrained migration
equivalence class

=< >,C tCnd vCnd Monitoring conditions for the occurrence of time-
constrained migration equivalence class migration

? “Input” of time-constrained migration equivalence
class

=< >,I ivVle iAct Input variables and operations of time-constrained
migration equivalence classes

! “Output” of time-constrained migration equivalence
class

=< >,O ovVle oAct Output variables and operations of time-constrained
migration equivalence classes

 < ∪ ∪ >time time1CTEC CTECi Extended test sequence

https://taylorandfrancis.com

285

Appendix 2
Semantics and Usage of RT-ESTDL

A2.1 LEXICAL RULES

 1. Whitespace and notes
In RT-ESTDL, white space is used to separate adjacent identifiers,

keywords and constants in the program, mainly including spaces,
tabs, line breaks, page breaks and comments.

In RT-ESTDL, comments can appear between any two tokens, and
the following three forms of comment statements can be supported:

• C language style notes, such as / * @ Hello word! * /, Multi line
comments can be supported;

• C + + style comments, single line comments starting with / /;

 2. Identifier
In RT-ESTDL, the identifier consists of letters and numbers, and

the requirements are as follows: the first character must be a letter;
Underscores are also used as letters; Case sensitive; The identifier can
be of any length.

286    ◾    Appendix 2

	 3.	keyword
The keywords of RT-ESTDL are as follows:

var	 const	 procedure	 include	 using
equipment	 static	 string	 array	 object
function	 resource	 if	 else	 switch
for	 do	 while	 break	 continue
return	 case	 default	 new	 bool
int	 float	 complex	 vec2	 vec3
vec4	 mat2	 mat3	 mat4

	 4.	numeric constants
An integer constant consists of a sequence of numbers. If it starts

with 0, it is an octal number, otherwise it is a decimal number, and if
it starts with 0x and 0x, it is a hexadecimal number.

Floating-point constants contain integer parts, decimal points and
fractional parts, an e or E, and optionally signed integer type expo-
nents. Both integer and decimal parts are composed of a sequence
of numbers. There may be no integer part or decimal part (but not
both).

for example:
const var x = 20;

	 5.	string constant
A string constant is a sequence of characters enclosed in double

quotes, such as “…”.
for example:
For const statements, the string constant string is supported, and

only when it is a constant, such as:
const string str = “myString”; // correct
string s = “myString”; // Error, variables of type string are not

supported
In addition, string constants can contain all characters except line

breaks. How to insert special characters:
\n inserts line break; \t inserts horizontal tab; \” inserts double

quotation marks; \\ inserts backslash.

Appendix 2    ◾    287

A2.2 � VALUE OF EXPRESSION
In RT-ESTDL, a value is the result of an expression, can be stored in a
variable, and can be passed to a function or procedure as a parameter, or
as the return value of a function or procedure. For example:

var pi;

pi=1+1/1.0+1/2.0+1/3.0+1/4.0+1/5.0+1/6.0+1/7.0;

Refer to relevant sections for operators supported by expressions in
RT-ESTDL and their associativity.

	 1.	Type check
Each value has a type, and all type checks are performed at run

time. In RT-ESTDL, there is no compile time type declaration and
type check, and any variable can refer to any type of value.

	 2.	Supplementary description of several values

SCHEDULE 2  Description of RT-ESTDL

Category Specify

Zero value The built-in constant null represents a special value. It has no type and is
different from all other values. It represents the abnormal state of any
value, such as the uninitialized variable.

Simple value By copy assignment, that is, each variable references a unique independent
memory copy.

There are 11 simple value types: bool, int, float, string, complex, vector
container (vec2, vec3, vec4), matrix container (mat2, mat3, mat4).

The Boolean value is regarded as an independent type and can only accept
two built-in constant values true and false. A string is regarded as an
atomic constant value, and a single character in the string cannot be
accessed and changed directly. Complex numbers, vector containers and
matrix containers are called composite values.

Other values Assignment by reference, including:
	(1)	Variable values include array and object. An array can store a sequence

of values of the same type. Object contains members and methods.
	(2)	 Immutable values include function and resource. A function is a value

that can be called. When a function is called, parameters are passed to
it, and it will return a result. Resources represent resources that can be
processed by built-in functions, such as files, display devices, etc.

288    ◾    Appendix 2

A2.3 � OPERATORS AND OPERATORS
All operators are shown in the following table. The operators are arranged
from high to low priority. The priority of the same group is not distin-
guished before and after, and it is judged according to the direction of the
combination law.

SCHEDULE 3  Combination Law of Operator and Operator of RT-ESTDL

Operator Meaning
Combination

Law Operator Meaning
Combination

Law

:: Name field
determination

– + Add / string
connection

Left

. Composite
member access

Left - reduce Left

[] Element access Left < less than –
-> Object member

access
Left <= Less than or

equal to
–

() function call Left > greater than –
<> combination – >= Greater than or

equal to
–

new Object/array
construction

– = = Identity equality –

++ Prefix/suffix
auto increment

– != Identity is not
equal to

–

-- Prefix/suffix self
subtraction

– & Bitwise AND Left

^ power – | Bitwise OR Left
! Logical non right && Logic and Left
~ Bitwise non right || Logical or Left
+ Positive number right ? : Conditional

expression
–

- negative right = assignment right
* ride Left % Take mold Left
/ except Left ^ Exponentiation right

Appendix 2    ◾    289

	 1.	Name field determination
In RT-ESTDL global procedures, the namespace of symbols allows

only global and built-in symbols to be found.
The namespace determination operator “::” can be processed in

two ways:

•	 <equipment>::<symbol> indicates that the symbol is processed
into the specified device, and the special identifier “super” is used
to refer to its parent device.

•	 ::<symbol> indicates that the symbol is processed as a global or
built-in namespace.

	 2.	Operator description

SCHEDULE 4  Usage Description of RT-ESTDL Operators

Category Usage Specify

Composite-type
member
access

<combined_
exp>. < component>

Member access operator “.” Allows
reading and writing of a member of a
composite value.

Array element
access

<array_ exp> [<index_
exp>]

The array element access operator ‘[]’
allows reading and writing to a
member of the array.

Object member
access

<object_ exp> ->
<member_ id>

The member access operator ‘- >’
allows you to read and write member
variables of an object.

Self-increasing
and
self-decreasing

var++; ++ var; var--; -- var Complete self-increasing and
self-decreasing functions. The same
can be applied to array elements or
object members.

Arithmetic
operator

var1+var2;
var1-var2;
var1*var2;
var1/var2;
VAR1% var2 / / mold taking
VAR1 ^ var2 / /
exponentiation

Note:
	 1.	Vectors and matrices of the same

size can be added or subtracted
	 2.	Vectors and matrices can also

multiply and divide a floating-
point number.

	 3.	 If the size between vector and
matrix matches, multiplication
and division can be performed.

	 4.	The + operator can be used to
connect two string values.

	 5.	The operators + and - can also be
used as unary operators to
represent positive or negative.

(Continued)

290    ◾    Appendix 2

SCHEDULE 4 (Continued)  Usage Description of RT-ESTDL Operators

Category Usage Specify

Comparison
operator

var1>var2;
var1>=var2;
var1<var2;
var1<=var2;
if(var1==var2) …
if(var1!=var2) …

Note:
	 1.	 In addition to being used to

compare two integers or floating-
point numbers, relational
comparison operators can also
compare two strings in dictionary
order.

	 2.	 Identity comparison operator = =
and= The calculation result is
Boolean, true or false.

Bitwise
operators

Slightly Including bit and (&), bit or (|) and bit
non (~). The operand must be an
integer value and the result is still an
integer value.

Logical
operator

Slightly Including logical and (& &), logical or
(|) and logical non (!). The operand
of a logical operator must be Boolean
and the result must be Boolean.

Assignment
operator

Slightly It can assign variables, object
members, array elements, or
composite values.

Conditional
Operator

<condition_ exp>? < true_
exp>: <false_ exp>

The conditional operator solves the
Boolean value of the first expression.
If the value is true, the second
expression will be solved and return
its value; otherwise, the third
expression will be solved and return
its value.

Combination
operator

< <component_
exp>,…; < component_
exp>,…;… >

Finish creating a vector or matrix.

Array
construction
operation

new <type> [<size_exp>];
new <type> [[<size_
const>]] { <init_exp>,… }

Creates an array of the given type and
size.

Object or
device model
construction

new <device>
([<arg_exp>,…])

Create an instantiation of the specified
device type, initialize the member
with the given parameters, and call
the constructor.

Appendix 2    ◾    291

A2.4 � DECLARATION
RT-ESTDL statements can be regarded as composed of constants, global
variables, procedures or objects. The statements are compiled to produce
intermediate instruction sequences. RT-ESTDL statements contain pre-
inclusion and declaration statements. A file can contain other files, and
the contents of the included file are processed at include. All declared sym-
bols in each file are globally visible in the namespace of the compiled test
description statement.

Declarations of constants, variables, procedures, and classes are
processed before initializing the procedure body and variables. Allows
procedures or initializers to access symbols declared later.

After the test description statement is compiled, the global and static
variables are initialized (the initialization order is the same as the declared
order).

The usage of pre-inclusion and constants, variables, functions and
procedures in RT-ESTDL statements is shown in the following table.

SCHEDULE 5  RT-ESTDL Pre-inclusion and Usage of Constants, Procedures, etc.

Category Usage Specify

Pre-
inclusion

#include “filename.tdf ”
#using “modefile.mdl”

Pre-inclusion starts with the keyword include
or using and ends with a semicolon. Can
appear anywhere in the file except the
declaration body.

	 1.	 include precompiling enables the compiler
to read the contents of another file. Each
file is read only once. If repeated inclusion,
redundant inclusion will be ignored.

	 2.	using precompiling indicates that you need
to provide the corresponding model file to
compile. If the model is not 	defined, the
compiler throws an error.

Constant const <id> =
<value>,…;

A constant is a symbol that contains a value
and can only be a simple type. The constant
value can be a number, a string constant, or
an expression that can be solved by the
compiler. Defined constants and built-in
constants can be used to define new
constants.

variable var <id> [=
<initializer>],…;

A variable is a symbol that can refer to any
value of any type. Initialization can be any
expression. If the variable is not initialized, its
initial value is zero and null.

(Continued)

292    ◾    Appendix 2

SCHEDULE 5 (Continued)  RT-ESTDL Pre-inclusion and Usage of Constants,
Procedures, etc.

Category Usage Specify

Function function <id>
([<arg>,…]) =
< expression>;

A function is a constant value that is a function
value. A function can accept up to 8
parameters. Calling a function is a process
that uses these parameters to solve, and the
calling efficiency of a function is higher than
that of a process.

Process procedure <id>
([<arg>,…]) {

<statements>
}

A procedure is a block of code that can pass
parameters or return values.

The local variables in the process do not need
to be declared. When they appear as lvalues,
they are declared and assigned immediately.

Equipment
model

equipment <id>
[: <virtual equipment >]

{
<declarations>
…
}

In RT-ESTDL, the real-time embedded device
model is a declaration of a group of members,
methods and static symbols.

	 1.	The device model can inherit the symbols
of the virtual device model or override
these inherited symbols. Each device
model creates a separate namespace to
hold the symbols declared therein. The
device model name should be different
from the global symbol and other class
names.

	 2.	Member objects are declared with the var
keyword. Members do not need to display
declarations, and new members can be
added to an object at any time. However,
member initialization is performed
automatically when a new instance is
created.

	 3.	Member functions are declared with the
function keyword.

	 4.	Member methods are declared with the
procedure keyword. Member methods
contain an implicit pointer this. No matter
member variables, member functions or
member methods, they cannot be accessed
directly like local variables, but must be
accessed through this pointer.

	 5.	Static symbols should be declared with the
static keyword.

Appendix 2    ◾    293

A2.5 � STATEMENT
In RT-ESTDL, the expression followed by a semicolon is the basic form of
simple statements. A series of statements can form a statement block by
expanding with curly braces {}. The use of curly braces does not change the
determination of name field.

SCHEDULE 6  Usage Description of RT-ESTDL Statement

Category Usage Specify

Process
control

return [<return_exp>]; End the current process and
return the return_ exp value

break; End innermost loop or switch
statement

continue; Ends the current interaction
of the innermost loop

Conditional
statement

if (<condition_exp>) <statement>
[else <statement2>];

Complete the condition
judgment according to the
value of the condition
expression.

switch (< condition_exp>) {
 case <constvalue1>: <statement1>
 case < constvalue2>: <statement2>
 …
 [default: <statement>]
}

Complete the branch selection
according to the value of the
conditional expression.

Circular
statement

for([<init_exp>];[<condition_
exp>];[<step_exp>])<statement>;

while(<condition_exp>) <statement>;
do{
 <statements> };
 while (<condition_exp>);

Three cyclic treatment
methods

294    ◾    Appendix 2

A
2.

6 �
SE

LF
-O

W
N

ED
 L

IB
R

A
RY

 F
U

N
C

TI
O

N

SC
H

ED
U

LE
 7

 
Se

lf-
O

w
ne

d
Li

br
ar

y
Fu

nc
tio

ns
 P

ro
vi

de
d

by
 R

T-
ES

TD
L

Fu
nc

tio
n

N
am

e
Fu

nc
tio

n
Pr

ot
ot

yp
e

Fu
nc

tio
n

R
et

ur
n

Va
lu

e
R

em
ar

ks

pr
in

t
vo

id
 p

rin
t(…

);
O

ut
pu

t t
o

st
an

da
rd

 d
isp

la
y

no
th

in
g

Pa
ra

m
et

er
s c

an
 b

e
an

y
ty

pe
 o

f
va

ria
bl

e
or

 co
ns

ta
nt

.
ab

s
in

t a
bs

(in
t)

Fi
nd

 th
e

ab
so

lu
te

 v
al

ue
 o

f a
n

in
te

ge
r

C
al

cu
la

tio
n

re
su

lts

ac
os

do
ub

le
ac

os
(d

ou
bl

e)
C

al
cu

la
te

 a
rc

co
sin

e
C

al
cu

la
tio

n
re

su
lts

as
in

do
ub

le
as

in
(d

ou
bl

e)
C

al
cu

la
te

 in
ve

rs
e

sin
e

C
al

cu
la

tio
n

re
su

lts
at

an
do

ub
le

at
an

(d
ou

bl
e)

C
al

cu
la

te
 a

rc
ta

ng
en

t
C

al
cu

la
tio

n
re

su
lts

at
an

2
do

ub
le

at
an

2(
do

ub
le

x,
 d

ou
bl

e y
)

C
al

cu
la

te
 th

e
ar

ct
an

ge
nt

 o
f x

/y
C

al
cu

la
tio

n
re

su
lts

co
s

do
ub

le
co

s(
do

ub
le)

C
om

pu
te

 co
sin

e
C

al
cu

la
tio

n
re

su
lts

In
 ra

di
an

s
co

sh
do

ub
le

co
sh

(d
ou

bl
e)

C
om

pu
te

 h
yp

er
bo

lic
 co

sin
e

C
al

cu
la

tio
n

re
su

lts
ex

p
do

ub
le

ex
p(

do
ub

le
x)

C
al

cu
la

te
 e

x
C

al
cu

la
tio

n
re

su
lts

fa
bs

do
ub

le
fa

bs
(d

ou
bl

e)
Fi

nd
 th

e
ab

so
lu

te
 v

al
ue

 o
f

flo
at

in
g-

po
in

t n
um

be
r

C
al

cu
la

tio
n

re
su

lts

flo
or

do
ub

le
flo

or
(d

ou
bl

e x
)

Fi
nd

 th
e

la
rg

es
t i

nt
eg

er
 n

ot

gr
ea

te
r t

ha
n

x
C

al
cu

la
tio

n
re

su
lts

fm
od

do
ub

le
fm

od
(d

ou
bl

e,
do

ub
le)

Fi
nd

 th
e

re
m

ai
nd

er
 o

f a
n

in
te

ge
r d

iv
id

ed
 b

y
X

/y
C

al
cu

la
tio

n
re

su
lts

lo
g

do
ub

le
lo

g(
do

ub
le)

Fi
nd

 L
N

X
C

al
cu

la
tio

n
re

su
lts

lo
g1

0
do

ub
le

lo
g1

0(
do

ub
le)

Fi
nd

 lo
g1

0x
C

al
cu

la
tio

n
re

su
lts

po
w

do
ub

le
po

w
(d

ou
bl

e,
do

ub
le)

Fi
nd

 X
Y

C
al

cu
la

tio
n

re
su

lts
(C

on
tin

ue
d)

Appendix 2    ◾    295

SC
H

ED
U

LE
 7

 (C
on

tin
ue

d)
 

Se
lf-

O
w

ne
d

Li
br

ar
y

Fu
nc

tio
ns

 P
ro

vi
de

d
by

 R
T-

ES
TD

L

Fu
nc

tio
n

N
am

e
Fu

nc
tio

n
Pr

ot
ot

yp
e

Fu
nc

tio
n

R
et

ur
n

Va
lu

e
R

em
ar

ks

ra
nd

in
t r

an
d(

vo
id

)
G

en
er

at
e -

90
 to

 3
27

67
 ra

nd
om

in

te
ge

rs
C

al
cu

la
tio

n
re

su
lts

Fo
r s

am
pl

in
g

ca
lc

ul
at

io
n

sin
do

ub
le

sin
(d

ou
bl

e)
sin

C

al
cu

la
tio

n
re

su
lts

In
 ra

di
an

s
sin

h
do

ub
le

sin
h(

do
ub

le)
Fi

nd
 h

yp
er

bo
lic

 si
ne

C
al

cu
la

tio
n

re
su

lts
sq

rt
do

ub
le

sq
rt

(d
ou

bl
e x

)
ca

lc
ul

at
io

n
C

al
cu

la
tio

n
re

su
lts

X
 sh

al
l b

e ≥
 0

ta
n

do
ub

le
ta

n(
do

ub
le)

ta
n

C
al

cu
la

tio
n

re
su

lts
In

 ra
di

an
s

ta
nh

do
ub

le
ta

nh
(d

ou
bl

e)
Fi

nd
 h

yp
er

bo
lic

 ta
ng

en
t

C
al

cu
la

tio
n

re
su

lts
sr

an
d

vo
id

 sr
an

d(
in

t)
Ra

nd
om

 n
um

be
r s

ee
d

C
al

cu
la

tio
n

re
su

lts
w

ai
t

vo
id

(in
t)

Ti
m

e
w

ai
tin

g
no

th
in

g
U

se
d

fo
r w

ai
tin

g
tim

e
du

rin
g

te
st

in
g

G
et

Cu
rT

es
tT

im
e

lo
ng

 G
et

Cu
rT

es
tT

im
e(

)
G

et
 th

e
cu

rr
en

t s
ys

te
m

 g
lo

ba
l

cl
oc

k
Cu

rr
en

t s
ys

te
m

gl

ob
al

 cl
oc

k
Si

nc
e

th
e

te
st

 st
ar

ts
 ti

m
in

g,

yo
u

ca
n

ge
t t

he
 g

lo
ba

l c
lo

ck

by
 c

al
lin

g
th

is
fu

nc
tio

n
In

itE
qp

m
t

BO
O

L
In

itE
qp

m
t(C

IO
D

AT
AV

A
R

io
D

at
a,

 C
IO

LI
N

K
 io

Li
nk

)
D

ev
ic

e
in

iti
al

iz
at

io
n

Is
 it

 tr
ue

U
se

d
fo

r i
ni

tia
liz

at
io

n
of

eq

ui
pm

en
t s

im
ul

at
io

n
m

od
el

St
ar

tE
qp

m
t()

BO
O

L
St

ar
tE

qp
m

t
(th

is-
>

 E
qp

m
t_

ID
)

D
ev

ic
e

st
ar

tu
p

Is
 it

 tr
ue

U
se

d
fo

r s
ta

rt
up

 a
nd

op

er
at

io
n

of
 e

qu
ip

m
en

t
sim

ul
at

io
n

m
od

el
Su

sp
en

dE
qp

m
t()

BO
O

L
Su

sp
en

dE
qp

m
t

(th
is-

>
 E

qp
m

t_
ID

)
D

ev
ic

e
pe

nd
in

g
Is

 it
 tr

ue
M

ak
e

th
e

de
vi

ce
 si

m
ul

at
io

n
m

od
el

 p
en

di
ng

Re
sta

rt
Eq

pm
t()

BO
O

L
Re

sta
rt

Eq
pm

t
(th

is-
>

 E
qp

m
t_

ID
)

D
ev

ic
e

re
st

ar
t

Is
 it

 tr
ue

Re
st

ar
t o

pe
ra

tio
n

fo
r

eq
ui

pm
en

t s
im

ul
at

io
n

m
od

el
St

op
Eq

pm
t()

BO
O

L
St

op
Eq

pm
t

(th
is-

>
 E

qp
m

t_
ID

)
Eq

ui
pm

en
t s

to
p

Is
 it

 tr
ue

Sh
ut

do
w

n
fo

r e
qu

ip
m

en
t

sim
ul

at
io

n
m

od
el (C

on
tin

ue
d)

296    ◾    Appendix 2

SC
H

ED
U

LE
 7

 (C
on

tin
ue

d)
 

Se
lf-

O
w

ne
d

Li
br

ar
y

Fu
nc

tio
ns

 P
ro

vi
de

d
by

 R
T-

ES
TD

L

Fu
nc

tio
n

N
am

e
Fu

nc
tio

n
Pr

ot
ot

yp
e

Fu
nc

tio
n

R
et

ur
n

Va
lu

e
R

em
ar

ks

Ad
dV

ar
()

vo
id

 A
dd

Va
r

(C
IO

D
AT

AV
A

R
io

D
at

aV
ar

)
A

dd
 in

te
rf

ac
e

I/
O

 v
ar

ia
bl

es
 to

th

e
de

vi
ce

no
th

in
g

D
ele

te
Va

r(
)

vo
id

 D
ele

te
Va

r
(C

IO
D

AT
AV

A
R

io
D

at
aV

ar
)

A
dd

 in
te

rf
ac

e
I/

O
 v

ar
ia

bl
es

 to

th
e

de
vi

ce
no

th
in

g

Se
nd

D
at

aV
al

ue
()

vo
id

 S
en

dD
at

aV
al

ue
 (s

rc
Eq

pm
t.

Eq
pm

t_
ID

, s
rc

Eq
pm

t.s
rc

Va
r,

ds
tc

Eq
pm

tID
. E

qp
m

t_
ID

,
ds

tc
Eq

pm
tID

.d
stV

ar
 C

IO
LI

N
K

io

lin
k)

C
ha

ng
e

th
e

ta
rg

et
 d

ev
ic

e
m

od
el

 v
ar

ia
bl

es
 b

y
se

nd
in

g
in

te
rf

ac
e

va
ria

bl
es

no
th

in
g

Se
e

da
ta

 co
m

m
un

ic
at

io
n

fo
r

eq
ui

pm
en

t m
od

el

Se
nd

D
at

aV
al

ue
()

vo
id

 S
en

dD
at

aV
al

ue
 (v

ar
 v

al
ue

,
ds

tc
Eq

pm
tID

. E
qp

m
t_

ID
,

ds
tc

Eq
pm

tID
.d

stV
ar

 C
IO

LI
N

K

io
lin

k)

C
ha

ng
e

th
e

ta
rg

et
 d

ev
ic

e
m

od
el

 v
ar

ia
bl

es
 b

y
se

nd
in

g
da

ta
 v

al
ue

s

no
th

in
g

G
et

D
at

aV
al

ue
 ()

vo
id

 G
et

D
at

aV
al

ue
 (r

cv
Eq

pm
tID

,
rc

vV
ar

, C
IO

Li
nk

 io
Li

nk
r)

G
et

 ta
rg

et
 d

ev
ic

e
m

od
el

va

ria
bl

e
da

ta
no

th
in

g
Se

e
da

ta
 co

m
m

un
ic

at
io

n
fo

r
eq

ui
pm

en
t m

od
el

297

Appendix 3
Software Interface Data
Definition of I/GNS System

SCHEDULE 8 I/GNS System Receiving Data List

Serial Refresh Transmission
Number Data and Content Sizea Cycle (ms) Type

1 A/ADIN/01-00 Atmospheric data 8 100 PRD
2 B/DCIN/00-00 System control 3 – UPE
3 A/DCIN/01-01 Latitude modification 4 200 PRD
4 A/DCIN/01–02 Longitude modification 4 – UPE
5 B/DCIN/01–03 Height modification 6 – UPE
6 B/DCIN/01–04 Course modification 6 50 PRD
7 A/DCIN/03-00 Runway binding 4 – UPE
8 A/DCIN/20–01 MFL request 2 – UPE
9 B/DCIN/20–02 Mbit command 2 100 PRD
10 A/DCIN/20–04 Memory check 2 – UPE
11 B/DCIN/20–05 Other parameter requests 3 50 PRD
12 B/DCIN/20–08 Drift data request 2 – UPE
13 A/DTIN/01-00 Airport data 28 50 COND
14 A/DTIN/02-00 System data modification 4 – PRD
15 B/MCIN/00-00 PUU data 8 – UPE
16 B/MCIN/02-00 Aircraft sideslip angle 2 50 PRD
a Note: The data size unit is WORD (16-bit binary number).

298    ◾    Appendix 3

SCHEDULE 9  I/GNS System Sending Data List

Serial
Number Data and Content Sizea

Refresh
Cycle (ms)

Transmission
Type

1 A/INLP/01-00 IN data 8 50 PRD
2 B/INPD/00-00 IN data 8 100 PRD
3 B/INPD/01-00 IN data 26 50 PRD
4 B/INSM/01-00 IN data 8 100 PRD
5 A/INSM/02-00 Base alignment data 20 100 PRD
6 A/INSM/03-00 Navigation data 16 100 UPE
7 B/INCN/00-00 Magnetic heading 3 50 PRD
8 A/INDC/00-00 System state 6 – UPE
9 A/INDC/01-00 Alignment display data 16 200 COND
10 B/INDC/02-00 Backup navigation data 10 50 PRD
11 B/INDC/03-00 Display data 30 50 UPE
12 B/INDC/04-00 Attitude data 12 50 PRD
13 A/INDC/19-00 PFL list 31 – UPE
14 A/INDC/20-01 MFL status 32 – UPE
15 B/INDC/20-02 Mbit status 32 50 PRD
16 B/INDC/20-03 MFL list 31 – UPE
17 A/INDC/20-04 Store data 32 50 PRD
18 B/INDC/20-05 Other parameters 30 – UPE
19 B/INDC/20-08 Drift data 30 – UPE
20 A/INDC/27-00 Flight test data 30 100 PRD
21 A/INDT/01-00 Alignment data 18 – UPE
22 A/INDT/03-00 Maximum acceleration 6 50 PRD
23 B/INDT/19-00 Fault data 32 – UPE
24 B/INFC/01-00 Backup data 4 100 PRD
100 B/INMC/00-00 Backup data 2 100 PRD
26 B/INMC/01-00 Backup data 30 50 PRD
27 A/INMC/02-00 Backup data 10 200 PRD
a	 Note:  the data size unit is WORD (16-bit binary number).

299

Appendix 4
Software Testing Scenario
Tree List of I/GNS

SCHEDULE 10 Software Testing Scenario Tree List of I/GNSS

0s → →1s 18s → 19s
0s → →1s s2 → →s3 15s → 19s
0s → →1s s2 → →s3 16s → 19s
0s → →1s s2 → →s3 17s → 19s
0s → →1s s2 → →s3 s4 → →5s s7 → →9s 19s
0s → →1s s2 → →s3 s4 → →5s s7 → →9s 10s → 19s
0s → →1s s2 → →s3 s4 → →5s s7 → →9s 10s → →9s 19s
0s → →1s s2 → →s3 s4 → →5s s7 → →9s 11s → 19s
0s → →1s s2 → →s3 s4 → →5s s7 → →9s 11s → 19s
0s → →1s s2 → →s3 s4 → →5s s7 → →9s 10s → →9s 11s → 19s
0s → →1s s2 → →s3 s4 → →5s s7 → →9s 11s → →s9 19s
0s → →1s s2 → →s3 s4 → →5s s7 → →9s 11s → →s9 10s → 19s
0s → →1s s2 → →s3 s4 → →5s s7 → 12s → 19s
0s → →1s s2 → →s3 s4 → →5s s7 → 13s → 19s
0s → →1s s2 → →s3 s4 → →5s s7 → 14s → 19s
0s → →1s s2 → →s3 s4 → →s6 s7 → →9s 19s
0s → →1s s2 → →s3 s4 → →s6 s7 → →9s 10s → 19s
0s → →1s s2 → →s3 s4 → →s6 s7 → →9s 10s → →9s 19s
0s → →1s s2 → →s3 s4 → →s6 s7 → →9s 11s → 19s
0s → →1s s2 → →s3 s4 → →s6 s7 → →9s 11s → 19s
0s → →1s s2 → →s3 s4 → →s6 s7 → →9s 10s → →9s 11s → 19s
0s → →1s s2 → →s3 s4 → →s6 s7 → →9s 11s → →s9 19s
0s → →1s s2 → →s3 s4 → →s6 s7 → →9s 11s → →s9 10s → 19s
0s → →1s s2 → →s3 s4 → →s6 s7 → 12s → 19s
0s → →1s s2 → →s3 s4 → →s6 s7 → 13s → 19s

(Continued)

300    ◾    Appendix 4

SCHEDULE 10 (Continued)  Software Testing Scenario Tree
List of I/GNSS

→ → → → → → → →0 1 2 3 4 6 7 14 19s s s s s s s s s
→ → → → → → → →0 1 2 3 4 5 8 9 19s s s s s s s s s
→ → → → → → → → →0 1 2 3 4 5 8 9 10 19s s s s s s s s s s
→ → → → → → → → → →0 1 2 3 4 5 8 9 10 9 19s s s s s s s s s s s
→ → → → → → → → →0 1 2 3 4 5 8 9 11 19s s s s s s s s s s
→ → → → → → → → →0 1 2 3 4 5 8 9 11 19s s s s s s s s s s
→ → → → → → → → → → →0 1 2 3 4 5 8 9 10 9 11 19s s s s s s s s s s s s
→ → → → → → → → → →0 1 2 3 4 5 8 9 11 9 19s s s s s s s s s s s
→ → → → → → → → → → →0 1 2 3 4 5 8 9 11 9 10 19s s s s s s s s s s s s
→ → → → → → → →0 1 2 3 4 5 8 12 19s s s s s s s s s
→ → → → → → → →0 1 2 3 4 5 8 13 19s s s s s s s s s
→ → → → → → → →0 1 2 3 4 5 8 14 19s s s s s s s s s
→ → → → → → → →0 1 2 3 4 6 8 9 19s s s s s s s s s
→ → → → → → → → →0 1 2 3 4 6 8 9 10 19s s s s s s s s s s
→ → → → → → → → → →0 1 2 3 4 6 8 9 10 9 19s s s s s s s s s s s
→ → → → → → → → →0 1 2 3 4 6 8 9 11 19s s s s s s s s s s
→ → → → → → → → →0 1 2 3 4 6 8 9 11 19s s s s s s s s s s
→ → → → → → → → → → →0 1 2 3 4 6 8 9 10 9 11 19s s s s s s s s s s s s
→ → → → → → → → → →0 1 2 3 4 6 8 9 11 9 19s s s s s s s s s s s
→ → → → → → → → → → →0 1 2 3 4 6 8 9 11 9 10 19s s s s s s s s s s s s
→ → → → → → → →0 1 2 3 4 6 8 12 19s s s s s s s s s
→ → → → → → → →0 1 2 3 4 6 8 13 19s s s s s s s s s
→ → → → → → → →0 1 2 3 4 6 8 14 19s s s s s s s s s

301

Bibliography

ADS2: Avionics Development System 2nd Generation.www.techsat.com.
Amalfitano D., Fasolino A. R., Tramontana P., Ta B.D., Memon A.M., MobiGUITAR

- A tool for automated model-based testing of mobile apps. IEEE Software,
2014, 32(5):53–59.

Amnell T., David A., Fersman E., Moller M.O., Pettersson P., Yi W. Tools for Real-
Time UML: Formal Verification and Code Synthesis. In Proceedings of the
SIVOES Workshop, part of the ECOOP 2001, Budapest, Hungary, June
18-22, 2001. Springer.

Anand S., Naik M., Harrold M.J., Yang H. Automated concolic testing of smart-
phone apps, In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering (FSE2012), New York:
ACM, 2012, pp. 59:1-59:11.

Android Instrumentation. https://developer.android.google.cn/reference/android/
app/Instrumentation.html.

Android operating system. https://www.android.com.
Android uiautomator. https://developer.android.com/tools/help/uiautomator/index.

html.
Apostolidis D., Tepelmann D., Rennoch A., Vouffo A., Use of TTCN-3 for the

development of SIGTRAN test, In 18th International Conference Software &
System Engineering and Their Application-ICSSEA, Paris, 2005.

Arzt S., Rasthofer S., Fritz C., et al. FlowDroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for Android apps. ACM Sigplan
Notices, 2014, 49(6):259–269.

AsyncTask. https://developer.android.com/reference/android/os/AsyncTask.html.
Azim T., Neamtiu I. Targeted and depth-first exploration for systematic testing

of android apps, In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages &
Applications (OOPSLA2013), New York: ACM, 2013, pp. 641–660.

Bourhfir C., Aboulhamid E., Dssouli R., Rico N. A test case generation approach
for conformance testing of SDL systems. Computer Communications, 2001,
24:319–333.

Cavarra A., Crichton C., Davies J. A method for the automatic generation of
test suites from object models. Information and Software Technology, 2004,
46:309–314.

http://www.techsat.com
https://developer.android.google.cn
https://developer.android.google.cn
https://www.android.com
https://developer.android.com
https://developer.android.com
https://developer.android.com

302    ◾    Bibliography

Chen W., Xue Y., Zhao C., Li M. A real-time system test method based on time
automata. Journal of Software, 2007, 18(1):62–73.

Chen W.H., Lu C. Executable test sequence for the protocol control and data
flow property with overlapping, In Proceedings of the Seventh International
Symposium on Computers and Communications, Taormina-Giardini Naxos,
Italy, 2002, pp. 251–257.

Choi W., Necula G., Sen K. Guided GUI testing of android apps with minimal
restart and approximate learning, In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages
& Applications (OOPSLA2013), New York: ACM, 2013, pp. 623–640.

Chu W., Zhang F., Fan X. A review of software architecture of integrated modular
avionics system. Journal of Aeronautics, 2009, 30(10):1912–1917.

Clover. https://www.unlimax.com/clover.html.
Cui Y. Research on Test Generation Based on UML State Diagram[D]. Central

China Normal University, 2009.
Diaz E., Tuya J., Blanco R. Automated software testing using a metaheuristic tech-

nique based on tabu search, In Proceedings of the 18th IEEE International
Conference on Automated Software Engineering (ASE’03), Montreal, QC,
2003.

Duale A.Y., Uyar M.U. A method enabling feasible conformance test sequence
generation for EFSM models. IEEE, Transactions on Computers, 2004,
53(5):614–627.

Ella. https://github.com/saswatanand/ella.
Emma. https://emma.sourceforge.net/.
ETSI ES 201 87301 V2.2.1(2003-02) Methods for Testing and Specification (MTS)

[R]; The Testing and Test Control Notation Version 3; Part1: TTCN-3 Core
Language.

Flake S. Real-time constrains with the OCL, In 5th IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, Washington, DC,
2002.

Gu B., Dong Y.-W., Wang Z. Formal modeling approach for aerospace embedded
software. Journal of Software (in Chinese), 2015, 26(2):321–331.

Hao S., Liu B., Nath S., et al., PUMA: Programmable UI-automation for large-
scale dynamic analysis of mobile apps, In Proceedings of the 12th Annual
International Conference on Mobile Systems, Applications, and Services
(MobiSys2014), New York: ACM, 2014, pp. 204–217.

Hessel A., Larsen K.G., Nielsen B. Time-optimal test cases for real-time systems,
In Proceedings of the 1st International Workshop on Formal Modeling and
Analysis of Timed Systems (FORMATS’03), 2003.

Hirayama M., Yamamoto T., Okayasu J., Mizuno O., Kikuno T. A selective soft-
ware testing method based on priorities assigned to functional modules,
In Proceedings of Second Asia-Pacific Conference on Quality Software, Hong
Kong, China, 2001, pp. 259–267.

Hou G., Zhou K., et al. Formal modeling and verification method of software based
on time STM. Journal of Software, 2015, 26(2):223–238.

https://www.unlimax.com
https://github.com
https://emma.sourceforge.net

Bibliography     ◾    303

Hu Z., Shatz S.M. Explicit modeling of semantics associated with composite
states in UML state charts. Journal of Automated Software Engineering, 2006,
13(4):423–467.

Huai J., Li Q., Hu C. Research and design of virtual computing environment based
on virtual machine. Journal of Software, 2007, 18(8):2016–2026.

Jacoco. https://www.eclemma.org/jacoco/.
Jie P., Watanabe M., Kuanjiu Z., Haoran L., Kai C. Formal modeling methods

for embedded software. Computer Engineering and Applications, 2018,
54(8):61–71.

Jurjens J. Model-based security testing using UMLsec a case study. Electronic Notes
in Theoretical Computer Science, 2008, 220:93–104.

Kaynar D.K., Lynch N., Segala R. et al. Timed I/O automata: A mathematical
framework for modeling and analyzing real-time systems, In Proceedings
of the 24th IEEE Int’l Real-Time Systems Symposium, Cancun, Mexico. IEEE
Computer Society, 2003. pp. 166–177.

Konrad S., Cheng B.H.C. Real-time specification patterns. Technical Report MSU
- CSE-04-37, Computer Science and Engineering. Michigan State University,
East Lansing, Michigan, September 2004, pp. 372–381.

Lai M., You J. Formalization of UML state diagrams with time extension using
time automation. Computer, 2003, 8(23):4–6.

Lee D., Chen D., Hao R., Miller R.E., Wu J., Yin X. A formal approach for passive
testing of protocol data portions, In 10th IEEE International Conference on
Network Protocols (ICNP 2002), Paris, France, IEEE Computer Society, 2002,
pp. 122–131.

Lin C. Stochastic Petri and System Performance Evaluation. Beijing: Tsinghua
University Press, 2000.

Liu B., Nath S., Govindan R., Liu J. DECAF: Detecting and characterizing ad fraud
in mobile apps, In Proceedings of the National Spatial Data Infrastructure
(NSDI2014), Seattle, WA, 2014, pp. 57–70.

Liu X., Liang B., Liu L., et al. Theory, Method and Technique of Complex System
Modeling. Beijing: Science Press, 2008.

Machiry A., Tahiliani R., Naik M. Dynodroid: An input generation system for
android apps, In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2013), New York: ACM, 2013, pp. 224–234.

Memon A., Banerjee I., Nagarajan A., GUI ripping: Reverse engineering of graphi-
cal user interfaces for testing, In Proceedings of the 10th Working Conference
on Reverse Engineering (WCRE2003), Washington, DC: IEEE Computer
Society, 2003.

MessageMagic. https://www.messagemagic.elvior.ee/index.html.
Mu K., Gu M. Research on automatic generation method of test cases based on

UML activity diagram. Computer Application, 2006, 26(4):844–847.
NASA Software Safety Guidebook[R], NASA-GB-8719.13, NASA, 2004.
Nilsson R., Offutt J., Mellin J. Test case generation for mutation-based test-

ing of timeliness. Electronic Notes in Theoretical Computer Science, 2006,
164:97–114.

https://www.eclemma.org
https://www.messagemagic.elvior.ee

304    ◾    Bibliography

Ning H., Hong Y. Formal verification methods for embedded operating systems.
Aeronautical Computing Technology, 2015, 45(2):96–100.

Paradkar A., Klinger T. Automated consistency and completeness checking of test-
ing models for interactive systems, In Computer Software and Applications
Conference (COMPSAC), Hong Kong, China, 2004, pp. 342–348.

Rethy G. Application of TTCN-3 for 2.5 and 3G Testing, The TTCN-3 User
Conference 2004, Sophia, Antipolis, France, 2004, pp. 1–24.

Rothermel G., Harrold M. J. Empirical studies of a safe regression test selec-
tion technique[J]. IEEE Transactions on Software Engineering, 1998,
24(6):401–419.

RT-LAB/ATB:RT-LAB Distributed Real-Time Power.www.opal-rt.com.
Sadjadi S.M., Kalayci S. A self-configuring communication virtual machine, In

IEEE International Conference on Networking, Sensing and Control, Sanya,
China, 2008, pp. 739–744.

Shan J., Jiang Y., Sun P. Research progress on software testing. Journal of Peking
University (Natural Science Edition), 2005, 41(1):134–145.

Shan J., Zhang L., Zhang T. Extension of real-time embedded software time
abstract state machine. Journal of Peking University (Natural Science Edition),
2019,55(2):197–208.

Shu G., Formal methods and tools for testing communication protocol system
security[D], PhD thesis, The Ohio University, 2008.

Sinha A., Paradkar A., Williams C. On generating EFSM models from use cases,
In International Conference on Software Engineering archive (ICSE 2007),
Minneapolis, MN, 2007.

Tang B., Liao W. Test case generation method for unified modeling language state
diagram. Computer Emulation, 2007, 24(8): 90–92.

TestQuest, Inc. TestQuest Pro(tm). https://www.testquest.com.
The Monkey UI android testing tool. https://developer.android.com/tools/help/

monkey.html.
Tip F. Infeasible paths in object-oriented programs. Science of Computer

Programming, 2015, 97:91–97.
Ural H. Test generation based on control and data dependencies within system

specification in SDL. Computer Communications, 2000, 23(7):609–627.
Verified’s RT-Tester. https://www.verified.de/rtt.html.
Wang X., Xuan L., Zhang W. Modeling and implementation of UMLbased embed-

ded real-time control system. Computer Technology and Development, 2006,
17(7):239–241.

Watkins J., Translated by He Hongwei et al., Practical Software Testing Process.
Beijing: China Machine Press.

Xiao J., Zhang D., Chen H., Dong H. Combining model detection and theorem
proof to develop and validate highly trusted embedded software. Journal of
Jilin University (Engineering Edition), 2005, 35(5):531–536.

Xiao P., Yin Y., Jiang B., Malaiya Y.K. Adaptive testing based on moment estima-
tion. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020,
50(3):911–922

http://www.opal-rt.com
https://www.testquest.com
https://developer.android.com
https://developer.android.com
https://www.verified.de

Bibliography     ◾    305

Yang X. Research on Automatic Generation of Test Cases Based on Z Language and
State Diagram. Master’s Thesis of Central China Normal University, 2006.

Yin Y., Bin L., Deming Z., Tongmin J. On modeling approach for embedded
real-time software simulation testing. Journal of Systems Engineering and
Electronics, 2009, 20(2):420–426.

Yin Y., Liu B., Li G., Wang Z. Embedded software simulation testing virtual
machine: Design and application. Applied Mechanics and Materials, 2010,
26-28:405–410.

Yin Y., Liu B., Lu M., Li Z. Test cases generation for embedded real-time soft-
ware based on extended UML, In International Conference on Information
Technology and Computer Science, Kiev, Ukraine, 2009, vol. 1, pp. 69–74.

Yin Y., Liu B., Ni H. Real-time embedded software testing method based on extend
finite state machine. Journal of Systems Engineering and Electronics, 2012,
23(2):276–285.

Yin Y., Su Q., Liu L. Software smell detection based on machine learning and its
empirical study, In The Second Target Recognition and Artificial Intelligence
Summit Forum (TRAI 2019), Changchun, China, Aug. 28-30 2019.

Yuan Y. Reliability Technology in Real-Time Systems. Nanning: Guangxi Science
and Technology Press, 1995.

Zeng J. An improved sparse representation face recognition algorithm for varia-
tions of illumination and pose. Journal of Information & Computational
Science, 2015, 12(16):5987–5994.

Zhan X., Miao H. An approach to formalizing the semantics of UML stat-
echarts, in Conceptual Modeling - ER2004, Springer, LNCS 3288, 2004. doi:
10.1007/978-3-540-30464-7_56.

Zhao W., Bai X., Wang W., et al. A novel alarm processing and fault diagnosis expert
system based on BNF rules, In Transmission and Distribution Conference and
Exhibition, Asia and Pacific, 2005.

Zheng M., Alagar V., Ormandjieva O. Automated generation of test suites from
formal specifications of real-time reactive systems. The Journal of Systems
and Software, 2008, 81:286–304.

Zhou X., Qu Y., Zhao B. Shortening the length of test sequences of EFSM using
reverse determinism. Journal of Communications, 2000, 21(11):48–55.

https://doi.org/10.1007/978-3-540-30464-7_56
https://doi.org/10.1007/978-3-540-30464-7_56

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Authors
	List of Abbreviations
	Introduction
	Chapter 1 Embedded System and Software
	1.1 Overview of Embedded System
	1.1.1 Embedded Systems and Real-Time Systems
	1.1.2 Features of Embedded Systems
	1.1.3 Composition of Embedded Systems
	1.1.4 Application Fields of Embedded Systems

	1.2 Overview of Embedded Software
	1.2.1 Embedded Software Classification
	1.2.2 Embedded Operating Systems

	1.3 Summary

	Chapter 2 Embedded Software Engineering and Quality Characteristics
	2.1 Embedded Software Engineering
	2.1.1 Embedded Software Development Model
	2.1.2 System Analysis and Software Definition Phase
	2.1.3 Software Requirements Analysis Phase
	2.1.4 Software Design Phase
	2.1.5 Software Implementation Phase
	2.1.6 Software Testing Phase
	2.1.7 Software Acceptance and Delivery
	2.1.8 Software Use and Maintenance Phase

	2.2 Embedded Software Engineering Management
	2.2.1 Software Engineering Management
	2.2.2 Software Development Methodology
	2.3 Embedded Software Quality Features

	2.4 Summary

	Chapter 3 Embedded Software System Testing Techniques Based on Formal Methods
	3.1 Overview of Software Formal Testing Techniques
	3.1.1 Overview of Software Formal Testing
	3.1.2 Formal Statute-Based Language
	3.1.3 Based on Finite State Machine and Time Automation Models
	3.1.4 Based on the UML
	3.1.5 Based on the Petri Net Model
	3.1.6 Based on the Markov Chain Model
	3.1.7 Based on a Custom Formal Test Description Language

	3.2 Embedded Software Formal Testing Techniques
	3.2.1 Basic Concept
	3.2.2 FSM-Based Software Testing Techniques
	3.2.3 EFSM-Based Software Testing Techniques
	3.2.4 Real-Time Extended Finite State Machine Model RT-EFSM

	3.3 Test Case Generation Based on Real-Time Extended UML With RT-EFSM
	3.3.1 UML and OCL Basic Concepts and Techniques
	3.3.2 UML and Software Testing
	3.3.3 UML Real-Time Extensions
	3.3.4 Test Case Generation Process Based on Real-Time Extended UML and RT-EFSM

	3.4 Summary

	Chapter 4 Real-Time Embedded Software Automation Test Description Technology
	4.1 Test Description Concept and Classification
	4.1.1 Test Description Concepts
	4.1.2 Test Description Classification

	4.2 Characteristics of Real-Time Embedded Software Test Description
	4.2.3 Status and Role of RT-ESTDL
	4.2.1 Real-Time Embedded Software Testing Features
	4.2.2 RT-ESTDL Design Principles

	4.3 Design of Real-Time Embedded Software Test Description Language
	4.3.1 Lexicon of RT-ESTDL
	4.3.2 Syntax of RT-ESTDL

	4.4 RT-ESTDL Support Mechanism for Real-Time Embedded Software Testing
	4.4.1 Support for Real-Time Embedded Device Modeling
	4.4.2 Support for Real-Time Embedded Software Testing Time Constraints and Concurrent Processing
	4.4.3 Support for Real-Time Communication of Real-Time Embedded Device Models
	4.4.4 Support for Reuse of Existing Device Models and Test Descriptions

	4.5 Summary

	Chapter 5 Testing Technology of Intelligent Terminal Application Software System
	5.1 Basics for Android Applications
	5.1.1 Android Operating System
	5.1.2 Android Development Environment
	5.1.3 Core Components for Android Application
	5.1.4 Android Emulator and ADB Tools
	5.1.5 Android UI
	5.1.6 Android Log System
	5.1.7 Code Coverage for Android Application
	5.1.8 Android GUI Testing Frameworks

	5.2 Test Case Generation Techniques for Android Applications
	5.2.1 Test Case Generation Tools for Android Application
	5.2.2 A GUI Traversal–Based Test Case Generation Framework

	5.3 Regression-Testing Techniques for Android Application
	5.3.1 Safe Regression Test Selection Techniques
	5.3.2 Workflow for Regression Testing of Android Applications
	5.3.3 Control Flow Graph Construction for Android Application
	5.3.4 Impact Analysis Algorithm

	5.4 Stress Testing of Android Application
	5.4.1 Resource Usage Query
	5.4.2 Memory Stress Testing
	5.4.3 CPU Stress Testing
	5.4.4 Network Stress Testing

	5.5 Summary

	Chapter 6 Real-Time Embedded Software System Testing Environment Construction Technology
	6.1 Analysis of Existing Test Environments for Real-Time Embedded Software Systems
	6.2 Virtual Machine Technology and Real-Time Embedded Software Testing
	6.3 Design of A Virtual Machine Specification for Real-Time Embedded Software Simulation and Testing
	6.3.1 Data Type
	6.3.2 Memory Management
	6.3.3 Test Task Management
	6.3.4 Instruction System
	6.3.5 Test Description File

	6.4 RT-ESSTVMS Based Real-Time Embedded Software Simulation Test Environment Design
	6.4.1 RT-ESSTE Architecture Design
	6.4.2 Test Development System Design
	6.4.3 Test Execution System Design

	6.5 Design and Implementation of A Real-Time Embedded Software Test Description Execution Engine
	6.5.1 Overall Design of RT-ESTDEE
	6.5.2 Test Description Pre-processing Process
	6.5.3 Test Scheduling Process
	6.5.4 Test Description Execution Process
	6.5.5 Execution of Online Test Descriptions
	6.5.6 Test Execution Engine Efficiency Analysis

	6.6 Summary

	Chapter 7 Case Study of Real-Time Embedded Software System Testing
	7.1 Introduction to the System Under Test
	7.1.1 I/GNS System Overview
	7.1.2 Main Functions and Performance

	7.2 I/GNS System Static Modeling
	7.2.1 Cross-Linked Device Model Construction
	7.2.2 Test Description of the Static Model

	7.3 I/GNS System Dynamic Modeling
	7.3.1 Dynamic Modeling Based on UML State Diagrams
	7.3.2 RT-EFSM Model of I/GNS and Analysis of Time-Constrained Migration Equivalence Class

	7.4 Test Sequence, Test Case and Test Description Generation
	7.5 Test Execution and Result Analysis
	7.6 Summary

	Appendix 1 Mathematical Symbol Index
	Appendix 2 Semantics and Usage of RT-ESTDL
	Appendix 3 Software Interface Data Definition of I/GNS System
	Appendix 4 Software Testing Scenario Tree List of I/GNS
	Bibliography

